【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當a=﹣1時,求函數(shù)f(x)的最大值和最小值.
(2)函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調函數(shù),求實數(shù)a的范圍.

【答案】
(1)解:a=﹣1,f(x)=(x﹣1)2+1;

∴f(1)=1是f(x)的最小值,f(﹣5)=37是f(x)的最大值


(2)解:f(x)的對稱軸為x=﹣a;

∵f(x)在區(qū)間[﹣5,5]上是單調函數(shù);

∴﹣a≤﹣5,或﹣a≥5;

∴a≥5,或a≤﹣5;

∴實數(shù)a的范圍為(﹣∞,﹣5]∪[5,+∞)


【解析】(1)求二次函數(shù)的最值、單調性,可以對二次函數(shù)方程使用配方法,使得函數(shù)的最值與單調性一目了然;(2)根據(jù)二次函數(shù)的開口方向、對稱軸與函數(shù)單調性的關系得到抽象函數(shù)的單調遞增與遞減區(qū)間,再結合題意列出不等式組,解不等式組求得實數(shù)a的取值范圍.
【考點精析】解答此題的關鍵在于理解函數(shù)的單調性的相關知識,掌握注意:函數(shù)的單調性是函數(shù)的局部性質;函數(shù)的單調性還有單調不增,和單調不減兩種,以及對二次函數(shù)在閉區(qū)間上的最值的理解,了解當時,當時,;當時在上遞減,當時,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,當n≥2時,Sn=2an
(1)求證數(shù)列{an}為等比數(shù)列,并求出an的通項公式;
(2)設若bn=an+1﹣1,設數(shù)列{anbn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2是橢圓 (a>b>0)的兩個焦點,O為坐標原點,點P(﹣1, )在橢圓上,且 =0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點A,B
(1)求橢圓的標準方程;
(2)當 =λ,且滿足 ≤λ≤ 時,求弦長|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)= ,則函數(shù)f(x)=g(lnx)﹣ln2x的零點個數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側面A1ABB1 , 且AA1=AB=2

(1)求證:AB⊥BC;
(2)若AC=2 ,求銳二面角A﹣A1C﹣B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項a1= ,an+1= ,n∈N*
(1)求證:數(shù)列{ ﹣1}為等比數(shù)列;
(2)記Sn= + +…+ ,若Sn<100,求滿足條件的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點分別為F1 , F2 , 點G在橢圓C上,且 =0,△GF1F2的面積為2.

(1)求橢圓C的方程;
(2)直線l:y=k(x﹣1)(k<0)與橢圓Γ相交于A,B兩點.點P(3,0),記直線PA,PB的斜率分別為k1 , k2 , 當 最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列A:a1 , a2 , …,an(n≥3)中ai∈N*(1≤i≤n)且對任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數(shù)列A為“U﹣數(shù)列”.
(Ⅰ)若數(shù)列1,x,y,7為“U﹣數(shù)列”,寫出所有可能的x,y;
(Ⅱ)若“U﹣數(shù)列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
(Ⅲ)設n0為給定的偶數(shù),對所有可能的“U﹣數(shù)列”A:a1 , a2 , …,an0 , 記M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數(shù)中最大的數(shù),求M的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+x,對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為

查看答案和解析>>

同步練習冊答案