點(diǎn)(1,1,1)關(guān)于z軸的對(duì)稱點(diǎn)為


  1. A.
    (-1,-1,1)
  2. B.
    (1,-1,-1)
  3. C.
    (-1,1,-1)
  4. D.
    (-1,-1,-1)
A
點(diǎn)A(1,1,1),則點(diǎn)A關(guān)于z軸的對(duì)稱點(diǎn)B的坐標(biāo)為就是豎坐標(biāo)不變,橫坐標(biāo)、縱坐標(biāo)的數(shù)值為相反數(shù),就是(-1,-1,1)。
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k);若P與M重合時(shí),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+2
x+b
,a,b∈R
,若函數(shù)f(x)圖象經(jīng)點(diǎn)(0,2),且圖象關(guān)于點(diǎn)(-1,1)成中心對(duì)稱.
(1)求實(shí)數(shù)a,b的值;
(2)若數(shù)列{an}滿足:a1=2,an+1=
2
f(an)-1
(n≥1,n∈N*)
,求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{bn}滿足:bn=n(an+2),數(shù)列{bn}的前項(xiàng)的和為Sn,若
Sn
(n-1)•2n
≤m
,(n≥2)恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
x+1
的圖象經(jīng)過原點(diǎn),且關(guān)于點(diǎn)(-1,1)成中心對(duì)稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足an>0,a1=1,an+1=[f(
an
)]2
,求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試判斷Sn與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①設(shè)函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為-
1
2
;
②關(guān)于x的不等式(a-3)x2<(4a-2)x對(duì)任意的a∈(0,1)恒成立,則x的取值范圍是(-∞,-1]∪[
2
3
,+∞)
,
③變量X與Y相對(duì)應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量U與V相對(duì)應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示變量Y與X之間的線性相關(guān)系數(shù),r2表示變量V與U之間的線性相關(guān)系數(shù),則r2<0<r1;
④下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
x 3 4 5 6
y 2.5 3 4 4.5
根據(jù)上表提供的數(shù)據(jù),得出y關(guān)于x的線性回歸方程為y=a+0.7x,則a=-0.35;
以上命題正確的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案