10.欲證$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需證( 。
A.${(\sqrt{7}-1)^2}>{(\sqrt{11}-\sqrt{5})^2}$B.${(\sqrt{7}+1)^2}>{(\sqrt{11}+\sqrt{5})^2}$C.${(\sqrt{7}+\sqrt{5})^2}>{(\sqrt{11}+1)^2}$D.${(\sqrt{7}-\sqrt{5})^2}>{(\sqrt{11}-1)^2}$

分析 根據(jù)分析法的步驟進(jìn)行判斷即可.

解答 解:∵$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$?$\sqrt{7}$+$\sqrt{5}$>$\sqrt{11}$+1,
∴欲證$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需證${(\sqrt{7}+\sqrt{5})^2}>{(\sqrt{11}+1)^2}$即可,此時(shí)平方之后為12+2$\sqrt{35}$>12+2$\sqrt{11}$,
化簡(jiǎn)之后的結(jié)果比較簡(jiǎn)單,
故選:C.

點(diǎn)評(píng) 本題主要考查分析法是應(yīng)用,根據(jù)分析法的步驟進(jìn)行判斷是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線的傾斜角為α,斜率為k,求:
(1)設(shè)30°≤α≤60°,求k的取值范圍;
(2)設(shè)120°≤α≤135°,求k的取值范圍;
(3)設(shè)45°≤α≤150°,求k的取值范圍;
(4)設(shè)k≥$\sqrt{3}$,求α的取值范圍;
(5)設(shè)k≤-$\sqrt{3}$,求α的取值范圍;
(6)設(shè)-1<k<1,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知x>0,y>0,x+2y=8,求xy的最大值
(2)設(shè)x>-1,求函數(shù)y=x+$\frac{4}{x+1}$+6的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=sin(2x-$\frac{π}{3}$),則下列判斷正確的個(gè)數(shù)是( 。
①此函數(shù)的最小正周期為π
②此函數(shù)的單調(diào)遞增區(qū)間是$[{kπ-\frac{π}{3},kπ+\frac{1}{6}π}](k∈Z)$
③此函數(shù)的圖象的一個(gè)對(duì)稱中心是$(\frac{2π}{3},0)$
④此函數(shù)的圖象的一個(gè)對(duì)稱軸是x=$\frac{π}{6}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.不等式|x-$\frac{1}{4}$|≤$\frac{1}{12}$的解集為{x|n≤x≤m}
(1)求實(shí)數(shù)m,n;
(2)若實(shí)數(shù)a,b滿足:|a+b|<m,|2a-b|<n,求證:|b|<$\frac{5}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將八進(jìn)制數(shù)123(8)化為十進(jìn)制數(shù),結(jié)果為( 。
A.11B.83C.123D.564

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.要得到函數(shù)y=2sin(2x+$\frac{2π}{3}$)的圖象,需要將函數(shù)y=2sin2x的圖象( 。
A.向左平移$\frac{2π}{3}$個(gè)單位B.向右平移$\frac{2π}{3}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),且a:b=3:1,則n的值為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知角α的終邊過點(diǎn)P(-3,4),則sin α=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案