【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,則( )

A.f(x)的一個(gè)對(duì)稱中心為
B.f(x)的圖象關(guān)于直線 對(duì)稱
C.f(x)在 上是增函數(shù)
D.f(x)的周期為

【答案】A
【解析】解:根據(jù)函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象,

可得A=3, = = ,∴ω=2,再根據(jù)五點(diǎn)法作圖可得2× +φ=π,∴φ= ,

∴y=3sin(2x+ ).

顯然,它的周期為 =π,故排除D;

當(dāng)x= 時(shí),函數(shù)y=f(x)=3sin(2x+ )=0,故函數(shù)的圖象關(guān)于點(diǎn) 對(duì)稱,故A正確.

當(dāng) 時(shí),f(x)= ,不是最值,故f(x)的圖象不關(guān)于直線 對(duì)稱,故排除B;

上,2x+ ∈[﹣ ,﹣ ],y=3sin(2x+ )不是增函數(shù),故排除C,

所以答案是:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= x3 x2+bx+c,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1.
(1)求b,c的值;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形ABCD與等邊△ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=AD=2,F(xiàn)為線段EA上的點(diǎn),且EA=3EF.
(I)求證:EC∥平面FBD
(Ⅱ)求多面體EFBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x2+(2﹣m)x﹣m,g(x)=x2﹣x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求關(guān)于x的不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)a2﹣2ab+5b2=4對(duì)a,b∈R成立,求a+b的最大值及相應(yīng)的a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(1﹣x)ex﹣1.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)設(shè) ,x>﹣1且x≠0,證明:g(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,sinB+ sin =1﹣cosB.
(1)求角B的大;
(2)求sinA+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ]時(shí)f(x)的值域;
(2)在△ABC中,角A、B、C所對(duì)的邊為a,b,c,且角C為銳角,SABC= ,c=2,f(C+ )= .求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率 ,焦距為
(1)求橢圓 的方程;
(2)已知橢圓 與直線 相交于不同的兩點(diǎn) ,且線段 的中點(diǎn)不在圓 內(nèi),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案