已知橢圓的焦點(diǎn)為F1、F2,拋物線y2=px(p>0)與橢圓在第一象限的交點(diǎn)為Q,若∠F1QF2=60°.

(1)求△F1QF2的面積;

(2)求此拋物線的方程.

答案:
解析:

  (1)在橢圓上, 

  又在中, 

  將①式平方減去②式,得:

  從而

  (2)設(shè)

   即

  故

  又點(diǎn)在橢圓上,所以 即

  故

  又點(diǎn)在拋物線上,所以

  

  所以拋物線方程為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),直線l:x-y+5=0,則
(1)經(jīng)過直線l上一點(diǎn)P且長軸長最短的橢圓方程為
 
,(2)點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的焦點(diǎn)為F1(0,-5),F(xiàn)2(0,5),點(diǎn)P(3,4)在橢圓上,求它的方程
(2)已知雙曲線頂點(diǎn)間的距離為6,漸近線方程為y=±
32
x,求它的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(-1,0)、F2(1,0),直線x=4是它的一條準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)A1、A2分別是橢圓的左頂點(diǎn)和右頂點(diǎn),P是橢圓上滿足|PA1|-|PA2|=2的一點(diǎn),求tan∠A1PA2的值;
(3)若過點(diǎn)(1,0)的直線與以原點(diǎn)為頂點(diǎn)、A2為焦點(diǎn)的拋物線相交于點(diǎn)M、N,求MN中點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(-6,0),F(xiàn)2(6,0),且該橢圓過點(diǎn)P(5,2).
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若橢圓上的點(diǎn)M(x0,y0)滿足MF1⊥MF2,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(0,-2
2
)
F2(0,2
2
)
,離心率為e,已知
2
3
,e,
4
3
成等比數(shù)列;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知P為橢圓上一點(diǎn),求
PF1
PF2
最大值.

查看答案和解析>>

同步練習(xí)冊答案