14.給出下列四個(gè)命題:
①如果一條直線(xiàn)垂直于一個(gè)平面內(nèi)的無(wú)數(shù)條直線(xiàn),那么這條直線(xiàn)與這個(gè)平面垂直;
②過(guò)空間一定點(diǎn)有且只有一條直線(xiàn)與已知平面垂直;
③如果平面外一條直線(xiàn)a與平面α內(nèi)一條直線(xiàn)b平行,那么a∥α;
④一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等;
其中真命題的為(  )
A.①③B.②④C.②③D.③④

分析 對(duì)于①,如果一條直線(xiàn)垂直于一個(gè)平面內(nèi)的任意直線(xiàn),那么這條直線(xiàn)與這個(gè)平面垂直,故錯(cuò);
對(duì)于②,因?yàn)榇怪蓖黄矫娴膬芍本(xiàn)平行,所以過(guò)空間一定點(diǎn)有且只有一條直線(xiàn)與已知平面垂直,故正確;
對(duì)于③,根據(jù)線(xiàn)面平行的判定定理,如果平面外一條直線(xiàn)a與平面α內(nèi)一條直線(xiàn)b平行,那么a∥α,故正確;
對(duì)于④,一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等或互補(bǔ),故錯(cuò);

解答 解:對(duì)于①,如果一條直線(xiàn)垂直于一個(gè)平面內(nèi)的任意直線(xiàn),那么這條直線(xiàn)與這個(gè)平面垂直,故錯(cuò)誤;
對(duì)于②,因?yàn)榇怪蓖黄矫娴膬芍本(xiàn)平行,所以過(guò)空間一定點(diǎn)有且只有一條直線(xiàn)與已知平面垂直,故正確;
對(duì)于③,根據(jù)線(xiàn)面平行的判定定理,如果平面外一條直線(xiàn)a與平面α內(nèi)一條直線(xiàn)b平行,那么a∥α,故正確;
對(duì)于④,一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等或互補(bǔ),故錯(cuò)誤;
故選:C.

點(diǎn)評(píng) 本題考查了空間線(xiàn)與線(xiàn)、線(xiàn)與面、面與面的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.給定下列函數(shù):
①f(x)=$\frac{1}{x}$②f(x)=-|x|③f(x)=-2x-1④f(x)=(x-1)2,滿(mǎn)足“對(duì)任意x1,x2∈(0,+∞),當(dāng)x1<x2時(shí),都有 f(x1)>f(x2)”的條件是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S8≤6,S11≥27,則S19的最小值是(  )
A.95B.114C.133D.152

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(\frac{1}{2})^{x},a≤x<0}\\{-{x}^{2}+2x,0≤x≤4}\end{array}\right.$的值域是[-8,1],則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-3]B.[-3,0)C.[-3,-1]D.{-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若過(guò)點(diǎn)(1,2)總可以作兩條直線(xiàn)與圓x2+y2+kx+2y+k2-15=0相切,則實(shí)數(shù)k的取值范圍是( 。
A.k<-3或k>2B.-3<k<2C.k>2D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=${cos^2}(x+\frac{π}{12})+\frac{1}{2}$sin2x.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)的圖象在y軸右邊的第一個(gè)對(duì)稱(chēng)中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.安排6名志愿者去做3項(xiàng)不同的工作,每項(xiàng)工作需要2人,由于工作需要,A,B二人必須做同一項(xiàng)工作,C,D二人不能做同-項(xiàng)工作,那么不同的安棑方案有多少種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿(mǎn)足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫閉函數(shù).
(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b]
(2)判斷函數(shù)f(x)=$\frac{x}{x+1}$是否為閉函數(shù)?并說(shuō)明理由;
(3)若y=k+$\sqrt{x+2}$是閉函數(shù),求實(shí)數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.直線(xiàn)y=kx+1與圓(x-1)2+(y-1)2=1相交于A,B,兩點(diǎn),若|AB|≥$\sqrt{2}$,則k的取值范圍( 。
A.[0,1]B.[-1,0]C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案