精英家教網 > 高中數學 > 題目詳情
若直線l1:ax+2y-8=0與直線l2:x+(a+1)y+4=0平行,則a的值為( 。
分析:通過直線的斜率相等,截距不相等,判斷直線平行,求出a的值.
解答:解;直線l1:ax+2y-8=0,它的斜率為-
a
2
,斜率存在,兩條直線平行
則直線l2:x+(a+1)y+4=0的斜率為-
1
a+1

所以-
a
2
=-
1
a+1

解得a=1,或a=-2
當a=-2時兩條直線重合,舍去,
所以a=1時兩條直線平行.
故選:A.
點評:此題為中檔題,要求學生會利用代數的方法研究圖象的位置關系,做此題時要注意直線的斜率是否存在,分情況討論得到所求的范圍.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若直線l1:ax+(1-a)y-3=0與直線l2:(a-1)x+(2a+3)y-2=0互相垂直,則a的值是(  )
A、-3
B、1
C、0或-
3
2
D、1或-3

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線l1:ax+y-1=0與l2:3x+(a+2)y+1=0平行,則a的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線l1:ax+(a+1)y=0與l2:2x+y+3a=0平行,則實數a=
-2
-2

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線l1:ax+2y+6=0與直線l 2:x+(a-1)y+a 2-1=0平行但不重合,則a等于( 。
A、2B、2或-1C、-1D、1

查看答案和解析>>

同步練習冊答案