已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
【解析】(1)求導(dǎo)令導(dǎo)數(shù)小于零.
(2)利用導(dǎo)數(shù)列表求極值,最值即可.
解:(I) 令,解得
所以函數(shù)的單調(diào)遞減區(qū)間為
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052600475291784350/SYS201205260049168553737519_DA.files/image006.png">
所以因?yàn)樵冢ǎ?,3)上,所以在[-1,2]上單調(diào)遞增,又由于在[-2,-1]上單調(diào)遞減,因此和分別是在區(qū)間[-2,2]上的最大值和最小值.于是有,解得
故 因此
即函數(shù)在區(qū)間[-2,2]上的最小值為-7.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年龍巖一中沖刺理)(12分)
已知函數(shù)
(1)求的最小正周期和單調(diào)增區(qū)間;
(2)求當(dāng)時(shí),函數(shù)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年河南省鄭州四中高考數(shù)學(xué)一輪復(fù)習(xí)綜合測試(一)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市石景山區(qū)高三上學(xué)期期末考試數(shù)學(xué)理科試卷 題型:解答題
已知函數(shù).
(Ⅰ)求的最小正周期;
(Ⅱ)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
(本小題共13分)
已知函數(shù)。
(Ⅰ)求的最小正周期:
(Ⅱ)求在區(qū)間上的最大值和最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com