已知函數(shù)
f(x)=
2x+1,(0<x<m)
x+1,(m≤x<1)
且f(m2)=
2
+1,則m的值為( 。
A、
1
2
B、
2
2
C、
42
D、
2
2
42
考點:函數(shù)的值
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)解析式對m進行分類討論,再結(jié)合f(m2)=
2
+1求出m的值.
解答: 解:由題意得,
f(x)=
2x+1,(0<x<m)
x+1,(m≤x<1)
,
當(dāng)0<m<1時,則0<m2<m,
所以f(m2)=2m2+1=
2
+1
,解得m=
2
2
;
當(dāng)m≥1時,則m2≥m≥1,不符合x的取值范圍,
所以m的值是
2
2

故選:B.
點評:本題考查分段函數(shù)的函數(shù)值,注意自變量的值對應(yīng)的解析式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

P是圓x2+y2=1上一點,Q是滿足
x≥0
y≥0
x+y≥2
的平面區(qū)域內(nèi)的點,則|PQ|的最小值為( 。
A、2
2
B、
2
+1
C、2
D、
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log
1
3
x,x>0
2x,x≤0
,若f(a)>
1
2
,則實數(shù)a的取值范圍是( 。
A、(-1,0)∪(
3
,+∞)
B、(-1,
3
)
C、(-1,0)∪(
3
3
,+∞)
D、(-1,
3
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a+sinbx(b>0且b≠1)的圖象如圖所示,那么函數(shù)y=logb(x-a)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某位股民購進某只股票,在接下來的交易時間內(nèi),他的這只股票先經(jīng)歷了n次漲停(每次上漲10%),又經(jīng)歷了n次跌停(每次下跌10%),則該股民這只股票的盈虧情況(不考慮其它費用)是( 。
A、略有盈利
B、略有虧損
C、沒有盈利也沒有虧損
D、無法判斷盈虧情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若冪函數(shù)y=xm是偶函數(shù),且x∈(0,+∞)時為減函數(shù),則實數(shù)m的值可能為( 。
A、
1
2
B、-
1
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象如圖所示,則圖象所對的解析式大致為( 。
A、y=x3+sinx
B、y=x3sinx
C、y=x2sinx
D、y=xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinα>0,且cosα<0,則角α是( 。
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈[
π
6
,
π
4
],且關(guān)于x的方程x2sinα-xcosα+k=0有唯一實數(shù)解.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)設(shè)該方程的唯一實數(shù)解為β,若α<tβ恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案