如下圖給出了一個算法流程圖,該算法流程圖的功能是( )
A.求三個數(shù)中最大的數(shù) B.求三個數(shù)中最小的數(shù)
C.按從小到大排列 D.按從大到小排列
科目:高中數(shù)學 來源:學習周報 數(shù)學 北師大課標高一版(必修3) 2009-2010學年 第38期 總194期 北師大課標版 題型:013
如下圖給出了一個算法框圖,其作用是輸入x的值,輸出相應的y值.若要輸入的x值與輸出的y值互為相反數(shù),則這樣的x有
1個
2個
3個
4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
試回答:(其中第(1)&(5)小題只需直接給出最后的結果,無需求解過程)
(1)記第i(i∈N*)行中從左到右的第j(j∈N*)個數(shù)為aij,則數(shù)列{aij}的通項公式為 ,
n階楊輝三角中共有 個數(shù);
(2)第k行各數(shù)的和是;
(3)n階楊輝三角的所有數(shù)的和是;
(4)將第n行的所有數(shù)按從左到右的順序合并在一起得到的多位數(shù)等于;
(5)第p(p∈N*,且p≥2)行除去兩端的數(shù)字1以外的所有數(shù)都能被p整除,則整數(shù)p一定為( )
A.奇數(shù) B.質數(shù) C.非偶數(shù) D.合數(shù)
(6)在第3斜列中,前5個數(shù)依次為1、3、6、10、15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:
第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).
試用含有m、k(m、k∈N*)的數(shù)學公式表示上述結論并證明其正確性.
數(shù)學公式為 .
證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com