已知tan(3π+α)=3,
求(1)
sin(α-3π)+cos(π-α)+sin(
π
2
-α)-2cos(
π
2
+α)
-sin(-α)+cos(π+α)
的值.
(2)sinα•cosα+sin2α+1的值.
分析:(1)原式利用誘導(dǎo)公式變形,再利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),將tanα的值代入計(jì)算即可求出值;
(2)原式分母看做“1”,利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),將tanα的值代入計(jì)算即可求出值.
解答:解:(1)∵tan(3π+α)=tanα=3,
∴原式=
-sinα-cosα+cosα+2sinα
sinα-cosα
=
sinα
sinα-cosα
=
tanα
tanα-1
=
3
3-1
=
3
2

(2)∵tanα=3,
∴原式=
sinα•cosα+sin2α+sin2α+cos2α
sin2α+cos2α
=
tanα+2tan2α+1
tan2α+1
=
3+18+1
9+1
=2.2.
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如圖:△ABC中,|
AC
|=2|
AB
|
,D在線段BC上,且
DC
=2
BD
,BM是中線,用向量證明AD⊥BM.(平面幾何證明不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(
π
4
+θ)=3
,則sin2θ-2cos2θ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(α+
π
4
)=3,則sin2α
=
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(3π+β)=-3,求(1)
3sinβ-2cosβ2sinβ+cosβ
;(2)4sin2β-3sinβcosβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan
α
2
=3
,求cos(
π
2
+α)
=
3
5
3
5

查看答案和解析>>

同步練習(xí)冊(cè)答案