分析:(1)依題意,可求得當(dāng)n=1時(shí),a
1=
;當(dāng)n≥2時(shí),
=
,從而可判斷數(shù)列a
n是首項(xiàng)為
,公比為
的等比數(shù)列,繼而可求數(shù)列{a
n}的通項(xiàng)公式;
(2)T
n=b
1+b
2+…+b
n=2×
+3×
()2+4×
()3+…+(n+1)×
()n,利用錯(cuò)位相減法即可求得求T
n;
(3)利用裂項(xiàng)法得c
n=
=
=3(
-
),從而可求數(shù)列{c
n}的前n項(xiàng)和R
n.
解答:解:(1)∵S
n=1-a
n,
當(dāng)n=1時(shí),a
1=S
1=1-a
1,解得a
1=
.
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=(1-a
n)-(1-a
n-1),
得2a
n=a
n-1,即
=
.
∴數(shù)列a
n是首項(xiàng)為
,公比為
的等比數(shù)列.
∴a
n=
•
()n-1=
()n.
(2)∵b
n=(n+1)a
n,
∴T
n=b
1+b
2+…+b
n=2×
+3×
()2+4×
()3+…+(n+1)×
()n,①
T
n=2×
()2+3×
()3+…+n×
()n+(n+1)×
()n+1,②
①-②得:
T
n=2×
+
()2+
()3+…+
()n-(n+1)×
()n+1=1+
-(n+1)×
()n+1=
-
()n-(n+1)×
()n+1=
-(n+3)×
()n+1∴T
n=3-(n+3)×
()n.
(3)∵c
n=
=
=3(
-
),
∴R
n=c
1+c
2+…+c
n=3[(
-
)+(
-
)+…+(
-
)]
=3(1-
).
點(diǎn)評(píng):本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的求法,著重考查數(shù)列的錯(cuò)位相減法求和與裂項(xiàng)法求和,解題時(shí)要熟練掌握數(shù)列的性質(zhì)和應(yīng)用,屬于中檔題.