【題目】數(shù)獨游戲越來越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨比賽,該區(qū)甲、乙、丙、丁四所學校的學生積極參賽,參賽學生的人數(shù)如表所示:

中學

人數(shù)

30

40

20

10

為了解參賽學生的數(shù)獨水平,該科技館采用分層抽樣的方法從這四所中學的參賽學生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學各抽取多少名學生?
(Ⅱ)從參加問卷調(diào)查的30名學生中隨機抽取2名,求這2名學生來自同一所中學的概率;
(Ⅲ)在參加問卷調(diào)查的30名學生中,從來自甲、丙兩所中學的學生中隨機抽取2名,用X表示抽得甲中學的學生人數(shù),求X的分布列.

【答案】解:(Ⅰ)由題意知,四所中學報名參加數(shù)獨比賽的學生總?cè)藬?shù)為100名, 抽取的樣本容量與總體個數(shù)的比值為
所以甲、乙、丙、丁四所中學各抽取的學生人數(shù)分別為9,12,6,3.
(Ⅱ)設(shè)“從30名學生中隨機抽取兩名學生,這兩名學生來自同一所中學”為事件A,
從30名學生中隨機抽取兩名學生的取法共有 種,
來自同一所中學的取法共有
所以
答:從30名學生中隨機抽取兩名學生來自同一所中學的概率為
(Ⅲ)由(Ⅰ)知,30名學生中,來自甲、丙兩所中學的學生人數(shù)分別為9,6.
依題意得,X的可能取值為0,1,2,
,


所以X的分布列為:

X

0

1

2

P


【解析】(Ⅰ)四所中學報名參加數(shù)獨比賽的學生總?cè)藬?shù)為100名,抽取的樣本容量與總體個數(shù)的比值 ,由此能求出甲、乙、丙、丁四所中學各抽取的學生人數(shù).(Ⅱ)從30名學生中隨機抽取兩名學生的取法共有 種,來自同一所中學的取法共有 ,由此能求出從30名學生中隨機抽取兩名學生來自同一所中學的概率. (Ⅲ)依題意得,X的可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列.
【考點精析】解答此題的關(guān)鍵在于理解分層抽樣的相關(guān)知識,掌握先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本,以及對離散型隨機變量及其分布列的理解,了解在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖動直線 與拋物線 交于點 ,與橢圓 交于拋物線右側(cè)的點 為拋物線的焦點,則 的最大值為( )

A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個容量為M的樣本數(shù)據(jù),其頻率分布表如下

(1)計算a,b的值;

(2)畫出頻率分布直方圖;

(3)用頻率分布直方圖,求出總體的眾數(shù)及平均數(shù)的估計值.

頻率分布表

分組

頻數(shù)

頻率

頻率/組距

(10,20]

2

0.10

0.010

(20,30]

3

0.15

0.015

(30,40]

4

0.20

0.020

(40,50]

a

b

0.025

(50,60]

4

0.20

0.020

(60, 70]

2

0.10

0.010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的一段圖象如圖所示:將的圖象向右平移)個單位,可得到函數(shù)的圖象,且圖象關(guān)于原點對稱.(1)求的值.

(2)求 的最小值,并寫出的表達式.

(3)設(shè)t>0,關(guān)于x的函數(shù)在區(qū)間上最小值為-2,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ln(x2﹣x)的定義域為( )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn . 若Sn=2an﹣n,則 + + + =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)A是單位圓O和x軸正半軸的交點,P,Q是圓O上兩點,O為坐標原點,∠AOP= ,∠AOQ=α,α∈[0, ].

(1)若Q( , ),求cos(α﹣ )的值;
(2)設(shè)函數(shù)f(α)=sinα( ),求f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知O的半徑是1,點C在直徑AB的延長線上,BC=1,點P是O上半圓上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心分別在PC的兩側(cè)

(1)若∠POB=θ,試將四邊形OPDC的面積y表示為關(guān)于θ的函數(shù);

(2)求四邊形OPDC面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某公園有三條觀光大道AB,BC,AC圍成直角三角形,其中直角邊BC=200m,斜邊AB=400m,現(xiàn)有甲、乙、丙三位小朋友分別在AB,BC,AC大道上嬉戲,所在位置分別記為點D,E,F(xiàn).

(1)若甲、乙都以每分鐘100m的速度從點B出發(fā)在各自的大道上奔走,到大道的另一端時即停,乙比甲遲2分鐘出發(fā),當乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設(shè)∠CEF=θ,乙丙之間的距離是甲乙之間距離的2倍,且∠DEF= ,請將甲乙之間的距離y表示為θ的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

同步練習冊答案