已知向量
a
=(1-x,2)
,
b
=(y,4)
,若
a
b
,則9x+3y的最小值為( 。
分析:利用向量共線定理及
a
b
,可得x,y的關(guān)系式,再利用基本不等式即可得出.
解答:解:∵向量
a
=(1-x,2)
,
b
=(y,4)
,
a
b
,∴2y-4(1-x)=0,化為2x+y=2.
∴9x+3y=32x+3y≥2
32x3y
=2
32x+y
=2
32
=6,當(dāng)且僅當(dāng)2x=y=1時(shí)取等號(hào).
因此9x+3y的最小值是6.
故選C.
點(diǎn)評(píng):本題考查了向量共線定理、基本不等式的性質(zhì)等基礎(chǔ)知識(shí)與基本方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos(x-
π
4
),sin(x-
π
4
))
,
b
=(cos(x+
π
4
),-sin(x+
π
4
))
f(x)=
a
b
-k|
a
+
b
|
,x∈[0,π].
(1)若x=
12
,求
a
b
|
a
+
b
|
;
(2)若k=1,當(dāng)x為何值時(shí),f(x)有最小值,最小值是多少?
(3)若f(x)的最大值為3,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)給出以下五個(gè)命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點(diǎn)P(
π
3
,1),則函數(shù)圖象上過點(diǎn)P的切線斜率等于-
3

③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0,1)上存在零點(diǎn).
⑤已知向量
a
=(1,-2)
與向量
b
=(1,m)
的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(-∞,
1
2

其中正確命題的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-2),
b
=(x,4)
,且
a
b
,則|
a
+
b
|
的值是
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-1),
b
=(x,2)
,若(
b
-2
a
)∥
a
,則
a
b
=
-4
-4

查看答案和解析>>

同步練習(xí)冊(cè)答案