集合A={x∈R|x=a+
2
b,a∈Z,b∈Z},判斷下列元素x和集合A之間的關系:
(1)x=0,(2)x=
1
2
-1
(3)x=
1
3
-
2

(4)x=x1+x2(其中x1∈A,x2∈A)
(5)x=x1x2(其中x1∈A,x2∈A)
考點:元素與集合關系的判斷
專題:集合
分析:根據(jù)元素和集合的關系分別對(1)至(5)進行解答.
解答: 解:(1)當a=0,b=0時,x=0,∴x∈A;
(2)當a=1,b=1時,x=
2
+1=
1
2
-1
,∴x∈A;
(3)找不到滿足條件的a,b使得x=
1
3
-
2
,∴x∉A;
(4)由(1)(2)得:x1=0,x2=
2
+1時,滿足x=x1+x2,∴x∈A;
(5)由(1)(2)得:x1=0,x2=
2
+1時,滿足x=x1•x2,∴x∈A.
點評:本題考查了元素和集合的關系,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin2x+sinx•cosx的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圖中有五個函數(shù)的圖象,依據(jù)圖象用“<”表示出以下五個量a,b,c,d,1的大小關系,正確的是( 。
A、a<c<1<b<d
B、a<1<d<c<b
C、a<1<c<b<d
D、a<1<c<d<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項等比數(shù)列{an},滿足a4=2a3+3a2,若存在兩項am,an使得
aman
=9a1
,則
4
m
+
1
n
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“m=1”是“直線(m-1)x+y-2=0與直線x+(m-1)y+5=0互相垂直”的( 。
A、充分必要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知無窮數(shù)列{an}是各項均為正數(shù)的等差數(shù)列,則有(  )
A、
a2
a3
a3
a4
B、
a2
a3
a3
a4
C、
a2
a3
a3
a4
D、
a2
a3
a3
a4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集∪=R,集合A={x|-4≤x≤2,x∈Z},B={x|x<-2},則A∩∁UB=( 。
A、{-2,-1,0,1,2}
B、{x|-2≤x<2}
C、{-1,0,1,2}
D、{x|-2<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={-1,0,1,2},B={x|x2>x},則集合A∩B=( 。
A、{-1,0,1}
B、{-1,2}
C、{0,1,2}
D、{-1,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-kx-3,x∈(-1,5].
(Ⅰ)當k=2時,求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-1,5]上是單調函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案