頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的拋物線經(jīng)過點(diǎn)A(1,
1
4
).
(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo);
(Ⅱ)求拋物線在點(diǎn)A處的切線方程.
考點(diǎn):拋物線的標(biāo)準(zhǔn)方程,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)設(shè)出拋物線方程,利用經(jīng)過點(diǎn)A(1,
1
4
),求出拋物線中的參數(shù),即可得到拋物線方程,從而可得拋物線的焦點(diǎn)F的坐標(biāo);
(Ⅱ)求出拋物線在點(diǎn)A處的切線斜率,即可求拋物線在點(diǎn)A處的切線方程.
解答: 解:(Ⅰ)因?yàn)閽佄锞C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,設(shè)標(biāo)準(zhǔn)方程為x2=2py,
因?yàn)辄c(diǎn)A(1,
1
4
)在拋物線上,所以1=
1
2
p,
所以p=2,拋物線的焦點(diǎn)F的坐標(biāo)(0,1);
(Ⅱ)拋物線方程為:x2=4y,即y=
1
4
x2
,
∴y′=
1
2
x,
x=1時,y′=
1
2
,
∴拋物線在點(diǎn)A處的切線方程為y-
1
4
=
1
2
(x-1),即2x-4y-1=0.x
點(diǎn)評:本題是基礎(chǔ)題,考查拋物線的標(biāo)準(zhǔn)方程的求法,考查導(dǎo)數(shù)的幾何意義,注意標(biāo)準(zhǔn)方程的形式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知空間中不共面的四個點(diǎn)A、B、C、D,每2個點(diǎn)之間均可連一條線段.
(Ⅰ)任意取出三條線段中.求A、B、C、D四個點(diǎn)均在這三條線段的端點(diǎn)中的概率.
(Ⅱ)任意取出三條線段中,設(shè)含有點(diǎn)A的線段的條數(shù)為隨機(jī)變量X,求X的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)交通執(zhí)法部門從某日上午9時開始對經(jīng)過當(dāng)?shù)氐?00輛超速車輛的速度進(jìn)行測量并分組,并根據(jù)測得的數(shù)據(jù)制作了頻率分布表如下,若以頻率作為事件發(fā)生的概率.
組號超速分組頻數(shù)頻率
頻率
組距
1[0.20%)1760.88z
2[20%,40%)120.060.30
3[40%,60%)6y0.15
4[60%,80%)40.020.10
5[805,100%]x0.010.05
(Ⅰ)求x,y,z的值,并估計該地區(qū)的超速車輛中超速不低于20%的頻率;
(Ⅱ)若在第3,4,5組用分層抽樣的方法隨機(jī)抽取6名司機(jī)做回訪調(diào)查,并在這6名司機(jī)中任意選2人進(jìn)行采訪,求這2人中恰有1人超速在[80%,100%]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了讓學(xué)生了解更多“奧運(yùn)會”知識,某中學(xué)舉行了一次“奧運(yùn)知識競賽”,共有800名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表,解答下列問題:
分組頻數(shù)頻率
60.5~70.50.16
70.5~80.510
80.5~90.5180.36
90.5~100.5
合計
(1)若用系統(tǒng)抽樣的方法抽取50個樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號為000,001,002,…,799,試寫出第二組第一位學(xué)生的編號;
(2)填充頻率分布表的空格(將答案直接填在表格內(nèi)),并作出頻率分布直方圖;
(3)若成績在85.5~95.5分的學(xué)生為二等獎,問參賽學(xué)生中獲得二等獎的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的對稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1和F2,且|F1F2|=2,離心率e=
1
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過F1的直線l與橢圓C相交于A,B兩點(diǎn),若△AF2B的面積為
12
2
7
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1,(a>b>0)經(jīng)過點(diǎn)(0,2),其左、右頂點(diǎn)分別是A、B,左、右焦點(diǎn)分別為F1、F2,P(異于A、B)是橢圓上的動點(diǎn),連接PA、PB交直線x=5于M、N兩點(diǎn),若|AF1|,|F1F2|,|F1B|成等比數(shù)列.
(1)求此橢圓的離心率;
(2)求證:以線段MN為直徑的圓過點(diǎn)F2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)寫出圓(x-a)2+(y-b)2=r2經(jīng)過原點(diǎn)的充要條件.(只寫不證)
(Ⅱ)已知命題p:?x0∈R,x02+2x0+2=0,寫出命題p的否定¬p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(x,y)為曲線C上任一點(diǎn),點(diǎn)F2(1,0),直線l:x=4,點(diǎn)P到直線l的距離為d,且滿足
d
|PF2|
=2.
(1)求曲線C的軌跡方程,并且說明其軌跡是何圖形;
(2)點(diǎn)F1(-1,0),點(diǎn)M為直線l上的一個動點(diǎn),且直線MF1與曲線C交于兩點(diǎn)A1,A2,直線MF2與曲線C交于兩點(diǎn)B1,B2,求|A1A2|+|B1B2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的各項(xiàng)都不為零,公差d>0,且a5+a10=0,記數(shù)列{-
2
an
}的前n項(xiàng)和為Sn,則使Sn<0成立的正整數(shù)n的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案