(本小題滿分14分)
如圖,已知橢圓
,
是橢圓
的頂點(diǎn),若橢圓
的離心率
,且過點(diǎn)
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)作直線
,使得
,且與橢圓
相交于
兩點(diǎn)(異于橢圓
的頂點(diǎn)),設(shè)直線
和直線
的傾斜角分別是
,求證:
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(滿分10分)(Ⅰ) 設(shè)橢圓方程
的左、右頂點(diǎn)分別為
,點(diǎn)M是橢圓上異于
的任意一點(diǎn),設(shè)直線
的斜率分別為
,求證
為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程
的左、右頂點(diǎn)分別為
,點(diǎn)M是橢圓上異于
的任意一點(diǎn),設(shè)直線
的斜率分別為
,利用(Ⅰ)的結(jié)論直接寫出
的值。(不必寫出推理過程)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓
與橢圓
相似,且橢圓
的一個(gè)短軸端點(diǎn)是拋物線
的焦點(diǎn).
(Ⅰ)試求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓
的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線
與橢圓
交于
兩點(diǎn),且與橢圓
交于
兩點(diǎn).若線段
與線段
的中點(diǎn)重合,試判斷橢圓
與橢圓
是否為相似橢圓?并證明你的判斷.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
的左右焦點(diǎn)分別為
、
,短軸兩個(gè)端點(diǎn)為
、
,且四邊形
是邊長(zhǎng)為2的正方形。
(1)求橢圓方程;
(2)若
分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)
滿足
,連接
,交橢圓于點(diǎn)
;證明:
為定值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
上有兩個(gè)動(dòng)點(diǎn)
、
,
,
,則
的最小值為( )
A.6 | B. | C.9 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,且過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形
ABCD的頂點(diǎn)在橢圓上,且對(duì)角線
A C、BD過原點(diǎn)
O,若
,
(i) 求
的最值.
(ii) 求證:四邊形
ABCD的面積為定值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知點(diǎn)
分別是橢圓
:
(
)的左頂點(diǎn)和上頂點(diǎn),橢圓的左右焦點(diǎn)分別是
和
,點(diǎn)
是線段
上的動(dòng)點(diǎn),如果
的最大值是
,最小值是
,那么,橢圓的
的標(biāo)準(zhǔn)方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
,直線
:y=x+m
(1)若
與橢圓有一個(gè)公共點(diǎn),求
的值;
(2)若
與橢圓相交于P,Q兩點(diǎn),且|PQ|等于橢圓的短軸長(zhǎng),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點(diǎn)
在橢圓
上,則
的最大值為( )
A. | B.-1 | C.2 | D.7 |
查看答案和解析>>