在四面體A-BCD中,已知AB=CD=5,AC=BD=
34
,AD=BC=
41
,求四面體的外接球半徑.
考點:球內(nèi)接多面體
專題:計算題,空間位置關(guān)系與距離
分析:將四面體補成長方體,通過求解長方體的對角線就是球的直徑,然后求解外接球的表面積.
解答: 解:由題意可采用割補法,考慮到四面體ABCD的四個面為全等的三角形,
所以可在其每個面補上一個以5,
34
,
41
為三邊的三角形作為底面,
且以分別x,y,z長、兩兩垂直的側(cè)棱的三棱錐,
從而可得到一個長、寬、高分別為x,y,z的長方體,
并且x2+y2=25,x2+z2=34,y2+z2=41,
則有(2R)2=x2+y2+z2=50(R為球的半徑),
所以球的表面積為S=4πR2=50π.
點評:本題考查幾何體的外接球的表面積的求法,割補法的應(yīng)用,判斷外接球的直徑是長方體的對角線的長是解題的關(guān)鍵之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若一個圓的半徑變?yōu)樵瓉淼囊话耄¢L變?yōu)樵瓉淼?span id="x3fr5jl" class="MathJye">
3
2
倍,則該弧所對的圓心角是原來的( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1在y軸上的截距為2,且與直線l2:2x+y-5=0平行,求直線l1的方程和兩條直線l1與l2間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|mx2-4x+1=0},若A∩[
1
3
,2]僅有一個元素,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次英語口語考試中,有備選的10道試題,已知某考生能答對其中的8道試題,規(guī)定每次考試都從備選題中任選3道題進(jìn)行測試,至少答對2道題才算合格.
(1)求該該考生答對試題數(shù)X的分布列及其期望;
(2)求該考生及格的概率;
(3)若答對一題得10分,答錯一題-20分,求該考生總得分Y的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U=R,C={x|x=a+b
2
,a、b∈Q,b≠0},則集合C與∁UQ的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的減函數(shù),那么f(a2-2a)與f(-2)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),l為過C的焦點F且傾斜角為α的直線.設(shè)l與C交于A、B兩點,A與坐標(biāo)原點連線交C準(zhǔn)線于D點.證明:BD⊥y軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin
A
2
+cos
A
2
=
2
3
3
,則sinA=
 
,cos2A=
 

查看答案和解析>>

同步練習(xí)冊答案