已知二次函數(shù)f(x)=ax2+bx+c(a>0)和一次函數(shù)g(x)=kx+m(k≠0),則“數(shù)學公式”是“這兩個函數(shù)的圖象有兩個不同交點”的


  1. A.
    必要不充分條件
  2. B.
    充分不必要條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
B
分析:先判斷p?q與q?p的真假,再根據充要條件的定義給出結論;也可判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
解答:若兩個函數(shù)的圖象有兩個不同的交點?“”不一定成立
但“”時,兩個函數(shù)的圖象相交,一定有兩個交點
由充要條件的定義:則“”是
“這兩個函數(shù)的圖象有兩個不同交點”的充分不必要條件
故選B
點評:判斷充要條件的方法是:
①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;
②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;
③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;
④若p?q為假命題且q?p為假命題,則命題p是命題q的既不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案