【題目】已知正三角形內(nèi)切圓的半徑是高的 ,把這個(gè)結(jié)論推廣到正四面體,類似的結(jié)論正確的是( )
A.正四面體的內(nèi)切球的半徑是高的
B.正四面體的內(nèi)切球的半徑是高的
C.正四面體的內(nèi)切球的半徑是高的
D.正四面體的內(nèi)切球的半徑是高的
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,三角形ABC為等腰直角三角形,AC=BC= ,AA1=1,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)二面角B1﹣CD﹣B的平面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為圓O的直徑,CD為垂直于AB的一條弦,垂足為E,弦AG交CD于F.
(1)求證:E,F,G,B四點(diǎn)共圓;
(2)若GF=2FA=4,求線段AC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,平面PBC⊥底面ABCD,且 PB=PC= .
(Ⅰ)求證:AB⊥CP;
(Ⅱ)求點(diǎn)B到平面PAD的距離;
(Ⅲ)設(shè)面PAD與面PBC的交線為l,求二面角A﹣l﹣B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】證明與分析
(1)已知a,b為正實(shí)數(shù).求證: + ≥a+b;
(2)某題字跡有污損,內(nèi)容是“已知|x|≤1, ,用分析法證明|x+y|≤|1+xy|”.試分析污損部分的文字內(nèi)容是什么?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)甲、乙、丙面試合格的概率分別是 , , ,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一點(diǎn)在直線上從時(shí)刻t=0(s)開始以速度v(t)=t2﹣4t+3(m/s)運(yùn)動(dòng),求:
(1)在t=4s時(shí)的位置;
(2)在t=4s的運(yùn)動(dòng)路程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點(diǎn)E,F(xiàn)分別在棱BB1 , CC1上,且C1F= C1C,BE=λBB1 , 0<λ<1.
(1)當(dāng)λ= 時(shí),求異面直線AE與A1F所成角的大;
(2)當(dāng)直線AA1與平面AEF所成角的正弦值為 時(shí),求λ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com