已知橢圓經(jīng)過點(diǎn),離心率為.
(1)求橢圓C的方程:
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時,求直線l的方程.
(1) .(2) .
【解析】
試題分析:(1) 由已知建立方程組 ① ②, 即得解.
(2)兩種思路,一是討論①當(dāng)直線的斜率為0,②當(dāng)直線的斜率不為0的情況;二是討論①當(dāng)直線垂直于x軸,②當(dāng)直線與x軸不垂直的情況.兩種情況的不同之處在于,直線方程的靈活設(shè)出.
第一種思路可設(shè)直線的方程為, 第二種思路可設(shè)直線的方程為.兩種思路下,都需要聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡化解題過程.
本題是一道相當(dāng)?shù)湫偷念}目.
試題解析:(1) 由已知可得,所以 ① 1分
又點(diǎn)在橢圓上,所以 ② 2分
由①②解之,得.
故橢圓的方程為. 4分
(2)解法一:①當(dāng)直線的斜率為0時,則; 5分
②當(dāng)直線的斜率不為0時,設(shè),,直線的方程為,
將代入,整理得. 7分
則, 9分
又,,
所以,
11分
令,則
當(dāng)時即時,;
當(dāng)時,
或
當(dāng)且僅當(dāng),即時, 取得最大值. 13分
由①②得,直線的方程為. 14分
解法二:①當(dāng)直線垂直于x軸時,則;
②當(dāng)直線與x軸不垂直時,設(shè),,直線的方程為,
將代入,整理得.
則
又,,
所以,
令由得或
所以當(dāng)且僅當(dāng)時最大,所以直線的方程為.
考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,直線方程,基本不等式,應(yīng)用導(dǎo)數(shù)研究函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆廣東省湛江市高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)已知橢圓經(jīng)過點(diǎn),離心率為.
(1)求橢圓的方程;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十三導(dǎo)數(shù) 題型:解答題
(本小題滿分13分)
已知橢圓經(jīng)過點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率。[來源:ZXXK]
(Ⅰ)求橢圓的方程;
(Ⅱ)求的角平分線所在直線的方程;
(Ⅲ)在橢圓上是否存在關(guān)于直線對稱的相異兩點(diǎn)?若存在,請找出;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題一集合與簡易邏輯 題型:解答題
(本小題滿分13分)
已知橢圓經(jīng)過點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率。[來源:ZXXK]
(Ⅰ)求橢圓的方程;
(Ⅱ)求的角平分線所在直線的方程;
(Ⅲ)在橢圓上是否存在關(guān)于直線對稱的相異兩點(diǎn)?若存在,請找出;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)
已知橢圓經(jīng)過點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率。[來源:ZXXK]
(Ⅰ)求橢圓的方程;
(Ⅱ)求的角平分線所在直線的方程;
(Ⅲ)在橢圓上是否存在關(guān)于直線對稱的相異兩點(diǎn)?若存在,請找出;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com