如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,

(Ⅰ)證明:A1C⊥平面AB1C1

(Ⅱ)若D是棱CC1的中點(diǎn),在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?證明你的結(jié)論.

答案:
解析:

  證明:(Ⅰ)∵,∴

  ∵三棱柱為直三棱柱,∴

  ∵,∴平面.∵平面,

  ∴,∵,則. 4分

  在中,,,∴

  ∵,∴四邊形為正方形.∴. 6分

  ∵,∴平面. 7分

  (Ⅱ)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面. 9分

  證明如下:如圖,取的中點(diǎn),連、,

  ∵、分別為、、的中點(diǎn),

  ∴

  ∵平面平面,

  ∴平面. 12分

  同理可證平面.∵

  ∴平面平面.∵平面,

  ∴平面. 14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點(diǎn),P是CD上的點(diǎn).
(1)求直線(xiàn)PE與平面ABC所成角的正切值的最大值;
(2)求證:直線(xiàn)PE∥平面A1BF;
(3)求直線(xiàn)PE與平面A1BF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線(xiàn)B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線(xiàn)段AA1上,當(dāng)AF=
a或2a
a或2a
時(shí),CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點(diǎn).
(Ⅰ)求證:B1C1⊥平面ABB1A1
(Ⅱ)設(shè)E是CC1的中點(diǎn),試求出A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求證:B1C1⊥平面ABB1A1
(3)在CC1上是否存在一點(diǎn)E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案