【題目】為提高玉米產(chǎn)量,某種植基地對(duì)單位面積播種數(shù)與每棵作物的產(chǎn)量之間的關(guān)系進(jìn)行了研究,收集了塊試驗(yàn)田的數(shù)據(jù),得到下表:

試驗(yàn)田編號(hào)

(棵/)

(斤/棵)

技術(shù)人員選擇模型作為的回歸方程類型,令,相關(guān)統(tǒng)計(jì)量的值如下表:

由表中數(shù)據(jù)得到回歸方程后進(jìn)行殘差分析,殘差圖如圖所示:

(1)根據(jù)殘差圖發(fā)現(xiàn)一個(gè)可疑數(shù)據(jù),請(qǐng)寫(xiě)出可疑數(shù)據(jù)的編號(hào)(給出判斷即可,不必說(shuō)明理由);

(2)剔除可疑數(shù)據(jù)后,由最小二乘法得到關(guān)于的線性回歸方程中的,求關(guān)于的回歸方程;

(3)利用(2)得出的結(jié)果,計(jì)算當(dāng)單位面積播種數(shù)為何值時(shí),單位面積的總產(chǎn)量的預(yù)報(bào)值最大?(計(jì)算結(jié)果精確到

附:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為,

【答案】(1)(2)(3)

【解析】

(1)根據(jù)殘差圖發(fā)現(xiàn)10號(hào)與其它編號(hào)的數(shù)據(jù)差異明顯,故可疑數(shù)據(jù)的編號(hào)為10;(2)先去掉10號(hào)的數(shù)據(jù),然后分別求出,即可得到關(guān)于的線性回歸方程,進(jìn)而得到關(guān)于的回歸方程;(3)先求出的表達(dá)式,然后利用基本不等式可以求出最大值。

(1)可疑數(shù)據(jù)為第

(2)剔除數(shù)據(jù)后,在剩余的組數(shù)據(jù)中,

,

所以 ,

所以關(guān)于的線性回歸方程為

關(guān)于的回歸方程為

(3)根據(jù)(2)的結(jié)果并結(jié)合條件,單位面積的總產(chǎn)量的預(yù)報(bào)值

當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí)

即當(dāng)時(shí),單位面積的總產(chǎn)量的預(yù)報(bào)值最大,最大值是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績(jī)頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計(jì)這200名學(xué)生的平均分;

3)若這200名學(xué)生的數(shù)學(xué)成績(jī)中,某些分?jǐn)?shù)段的人數(shù)與英語(yǔ)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如表所示,求英語(yǔ)成績(jī)?cè)?/span>的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),則使得的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有編號(hào)為1,2,3…n的n個(gè)學(xué)生,入座編號(hào)為1,2,3…n的n個(gè)座位,每個(gè)學(xué)生規(guī)定坐一個(gè)座位, 設(shè)學(xué)生所坐的座位號(hào)與該生的編號(hào)不同的學(xué)生人數(shù)為, 已知時(shí), 共有6種坐法.

(1)求的值;

(2)求隨機(jī)變量的概率分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)斜率為的直線與橢圓交于不同的兩點(diǎn)、若橢圓上存在點(diǎn),使得四邊形為平行四邊形(其中是坐標(biāo)原點(diǎn)),求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中,是邊長(zhǎng)為4的正三角形,平面平面SA=SC=,M,N分別為AB,SB的中點(diǎn).

1)求證:ACSB;

2)求二面角NCMB的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角,,所對(duì)的邊分別為,,,已知.

(Ⅰ)求;

(Ⅱ)若,且的面積為,求的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校參加期中考試的高一學(xué)生中隨機(jī)抽取100名得到這100名學(xué)生語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);

3)已知學(xué)生的語(yǔ)文成績(jī)?yōu)?/span>123分,現(xiàn)從成績(jī)?cè)?/span>中的學(xué)生中隨機(jī)抽取2人參加演講賽,求學(xué)生被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案