考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出其導(dǎo)函數(shù),利用導(dǎo)函數(shù)值的正負(fù)來(lái)求其單調(diào)區(qū)間,進(jìn)而求得其極值.(注意是在定義域內(nèi)研究其單調(diào)性)
解答:
解:∵f(x)=
+lnx,
∴f′(x)=
,
∵x>0
∴當(dāng)x>1時(shí),f′(x)>0,即f(x)遞增;
當(dāng)0<x<1時(shí),f′(x)<0,f(x)遞減.
且f(x) 極小值為f( 1)=1.
故答案為:1.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值以及函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間、極值、最值問(wèn)題,是函數(shù)這一章最基本的知識(shí),也是教學(xué)中的重點(diǎn)和難點(diǎn),學(xué)生應(yīng)熟練掌握.