(本題滿分13分)
函數(shù).
(1)求證函數(shù)在區(qū)間上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應的近似值(誤差不超過);(參考數(shù)據(jù),,)
(2)當時,若關于的不等式恒成立,試求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
(I)討論的單調性;
(II)若有兩個極值點和,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若曲線在點處的切線的傾斜角為,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上單調遞增,求實數(shù)實數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知.
(Ⅰ)若在上為增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當常數(shù)時,設,求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知函數(shù),在點處的切線方程是(e為自然對數(shù)的底)。
(1)求實數(shù)的值及的解析式;
(2)若是正數(shù),設,求的最小值;
(3)若關于x的不等式對一切恒成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)已知函數(shù)
(Ⅰ)當時,求函數(shù)的單調區(qū)間;
(Ⅱ)若在是單調函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在點處的切線方程為.
(I)求的表達式;
(Ⅱ)若滿足恒成立,則稱是的一個“上界函數(shù)”,如果函數(shù)為(R)的一個“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當時,討論在區(qū)間(0,2)上極值點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分)已知定義在上的函數(shù),其中為常數(shù).
(1)若是函數(shù)的一個極值點,求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;
(3)若函數(shù),在處取得最大值,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億
元)和Q(億元),它們與投資額t(億元)的關系有經(jīng)驗公式P=,Q=t.今該公司將5
億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億
元).求:(1)y關于x的函數(shù)表達式;
(2)總利潤的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com