設(shè)集合A={y|y=數(shù)學(xué)公式•4x-4•2x+9 x∈[0,3]},B={y|(y-a)( y-a2-1)≥0},若A∩B=Φ,求實數(shù)a的取值范圍.

解:y=(2x2-4•2x+9=(2x-4)2+1
∵x∈[0,3]∴2x∈[1,8]
∴A=[1,9]
∵a2+1>a
∴B={y|y≤a或y≥a2+1}
∵A∩B=Φ
∴a<1,a2+1>9
∴a<-2
分析:根據(jù)二次函數(shù)的性質(zhì)求出集合A,然后根據(jù)不等式求出集合B,最后依據(jù)A∩B=Φ建立不等關(guān)系,解之即可.
點評:本題主要考查了函數(shù)的值域,不等式的解集和交集等基礎(chǔ)知識,考查化歸的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={y|y=
x2-1
,B={x|y=
x2-1
}
,則下列關(guān)系中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={y|y=log2x,x>1},B={y|y=(
12
)
x
,x>1}
,C={y|y=x2-4x,x>1}.
求(Ⅰ)A∩B;     
(Ⅱ)B∪C;     
(Ⅲ)(CRA)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={y|y=2x+1},全集U=R,則CUA為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={y|y=1nx,x≥1},B={y|y=1-2x,x∈R}則A∩B=( 。
A、[0.1)B、[0,1]C、(-∞,1]D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={y|y=2x,1≤x≤2},B={x|0<lnx<1},C={x|t+1<x<2t,t∈R}.
(1)求A∩B;
(2)若A∩C=C,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案