14.若集合M={y|y=3x},N={x|y=$\sqrt{1-3x}$},則M∩N=(  )
A.[0,$\frac{1}{3}$]B.(0,$\frac{1}{3}$]C.(0,+∞)D.(-∞,$\frac{1}{3}$]

分析 求出M中y的范圍確定出M,求出N中x的范圍確定出N,找出兩集合的交集即可.

解答 解:由M中y=3x>0,得到M=(0,+∞),
由N中y=$\sqrt{1-3x}$,得到1-3x≥0,
解得:x≤$\frac{1}{3}$,即N=(-∞,$\frac{1}{3}$),
則M∩N=(0,$\frac{1}{3}$],
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.設函數(shù)f(x)=$\left\{\begin{array}{l}x^2,x≥0\\ ln(-x),x<0\end{array}$,則函數(shù)g(x)=f(x)-x的零點的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x+$\frac{4}{x}$(其中x>0).
(Ⅰ)求證:f(x)在(0,2]上是減函數(shù),在[2,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在區(qū)間[2,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+c}}$(a{N*,b∈R,0<c≤1)定義在[-1,1]上的奇函數(shù),f(x)的最大值為$\frac{1}{2}$,且f(1)>$\frac{2}{5}$.
( I)求函數(shù)f(x)的解析式;
( II)判斷函數(shù)f(x)的單調性;并證明你的結論;
( III)當存在x∈[$\frac{1}{2}$,1]使得不等式f(mx-x)+f(x2-1)>0成立時,請同學們探究實數(shù)m的所有可能取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.對某電子元件進行壽命追蹤調查,情況如表.
壽命(h)100~200200~300300~400400~500500~600
個  數(shù)2030804030
(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)從頻率分布直方圖估計出電子元件壽命的眾數(shù)、中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知|${\overrightarrow a}$|=$\frac{1}{2}$|${\overrightarrow b}$|,函數(shù)f(x)=$\frac{1}{3}$x3+|${\overrightarrow a}$|x2+$\overrightarrow a$•$\overrightarrow b$x-|${\overrightarrow a$+$\overrightarrow b}$|在R上有極值,則向量$\overrightarrow a$與$\overrightarrow b$的夾角的范圍是(  )
A.[$0\;,\;\frac{π}{6}$)B.$(\frac{π}{6}\;,\;π)$C.$(\frac{π}{3}\;,\;π)$D.$(\frac{π}{3}\;,\;π$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.當x∈(0,5]時,函數(shù)f(x)=3x2-4x+c的值域為( 。
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知定義域為R的奇函數(shù)f(x),當x>0時,f(x)=x2-3.
(1)求函數(shù)f(x)在R上的解析式;
(2)求不等式f(x)>2x的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設等比數(shù)列{an}的前n項和為Sn,且S3=7,S6=63.
(1)求an和Sn;
(2)記數(shù)列{Sn}的前n項和為Tn,求Tn

查看答案和解析>>

同步練習冊答案