【題目】 為向國際化大都市目標(biāo)邁進(jìn),沈陽市今年新建三大類重點工程,它們分別是30項基礎(chǔ)設(shè)施類工程,20項民生類工程和10項產(chǎn)業(yè)建設(shè)類工程.現(xiàn)有來沈陽的3名工人相互獨立地從這60個項目中任選一個項目參與建設(shè).

)求這3人選擇的項目所屬類別互異的概率;

)將此3人中選擇的項目屬于基礎(chǔ)設(shè)施類工程或產(chǎn)業(yè)建設(shè)類工程的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

【答案】I;(II分布列見解析,

【解析】

試題I人選擇的項目所屬類別互異的概率:;(II)任一名工人選擇的項目屬于基礎(chǔ)設(shè)施類或產(chǎn)業(yè)建設(shè)類工程的概率:且符合二項分布,根據(jù)二項分布分布列公式即可求得.

試題解析:記第名工人選擇的項目屬于基礎(chǔ)設(shè)施類,民生類,產(chǎn)業(yè)建設(shè)類分別為事件.

由題意知均相互獨立.

3人選擇的項目所屬類別互異的概率:

)任一名工人選擇的項目屬于基礎(chǔ)設(shè)施類或產(chǎn)業(yè)建設(shè)類工程的概率:

.

的分布列為

0

1

2

3

其數(shù)學(xué)期望為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校升旗儀式上,主持人站在主席臺前沿D處,測得旗桿AB頂部的仰角為俯角最后一排學(xué)生C的俯角為最后一排學(xué)生C測得旗桿頂部的仰角為旗桿底部與學(xué)生在一個水平面上,并且不計學(xué)生身高.

(1)設(shè)米,試用表示旗桿的高度AB(米);

(2)測得米,若國歌長度約為50秒,國旗班升旗手應(yīng)以多大的速度勻速升旗才能是國旗到達(dá)旗桿頂點時師生的目光剛好停留在B處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且滿足.

(1)判斷函數(shù)上的單調(diào)性,并用定義證明;

(2)設(shè)函數(shù),在區(qū)間上的最大值;

(3)若存在實數(shù)m,使得關(guān)于x的方程恰有4個不同的正根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時取得極值.

(1)的值;

(2)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(每位同學(xué)被選到的可能性相同).

(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;

(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,角的對邊分別為,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進(jìn)行抽樣檢查,測得身高情況的統(tǒng)計圖如圖所示:

(1)估計該校男生的人數(shù);

(2)估計該校學(xué)生身高在170185cm的概率;

(3)從樣本中身高在180190cm的男生中任選2人,求至少有1人身高在185190cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為集合的子集,且,若,則稱為集合元“大同集”.

(1)寫出實數(shù)集的一個二元“大同集”;

(2)是否存在正整數(shù)集的二元“大同集”,請說明理由;

(3)求出正整數(shù)集的所有三元“大同集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.

求橢圓E的方程;

A是橢圓E的左頂點,經(jīng)過左焦點F的直線l與橢圓E交于C,D兩點,求為坐標(biāo)原點的面積之差絕對值的最大值.

已知橢圓E上點處的切線方程為T為切點P是直線上任意一點,從P向橢圓E作切線,切點分別為NM,求證:直線MN恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案