(2013•福建)某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
P(x2≥k) 0.100 0.050 0.010 0.001
k 2.706 3.841 6.635 10.828

(I)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(II)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有90%的把握認為“生產(chǎn)能手與工人所在的年齡組有關”?附:x2=
n(n11n22-n12n21)
n1*n2*n*1n*2
(注:此公式也可以寫成k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
分析:(I)由分層抽樣的特點可得樣本中有25周歲以上、下組工人人數(shù),再由所對應的頻率可得樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上、下組工人的人數(shù)分別為3,2,由古典概型的概率公式可得答案;(II)由頻率分布直方圖可得“25周歲以上組”中的生產(chǎn)能手的人數(shù),以及“25周歲以下組”中的生產(chǎn)能手的人數(shù),據(jù)此可得2×2列聯(lián)表,可得k2≈1.79,由1.79<2.706,可得結(jié)論.
解答:解:(I)由已知可得,樣本中有25周歲以上組工人100×
300
300+200
=60名,
25周歲以下組工人100×
200
300+200
=40名,
所以樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上組工人有60×0.05=3(人),
25周歲以下組工人有40×0.05=2(人),
故從中隨機抽取2名工人所有可能的結(jié)果共
C
2
5
=10種,
其中至少1名“25周歲以下組”工人的結(jié)果共
C
1
3
C
1
2
+
C
2
2
=7種,
故所求的概率為:
7
10
;
(II)由頻率分布直方圖可知:在抽取的100名工人中,“25周歲以上組”中的生產(chǎn)能手有60×0.25=15(人),
“25周歲以下組”中的生產(chǎn)能手有40×0.375=15(人),據(jù)此可得2×2列聯(lián)表如下:
  生產(chǎn)能手  非生產(chǎn)能手  合計
 25周歲以上組  15  45  60
 25周歲以下組  15  25  40
 合計  30  70  100
所以可得k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
=
100×(15×25-15×45)2
60×40×30×70
=
25
14
≈1.79,
因為1.79<2.706,所以沒有90%的把握認為“生產(chǎn)能手與工人所在的年齡組有關”.
點評:本題考查獨立性檢驗,涉及頻率分布直方圖,以及古典概型的概率公式,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•福建)某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據(jù)此估計,該模塊測試成績不少于60分的學生人數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•福建)已知某一多面體內(nèi)接于球構(gòu)成一個簡單組合體,如果該組合體的正視圖、俯視圖、均如圖所示,且圖中的四邊形是邊長為2的正方形,則該球的表面積是
12π
12π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•福建)某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為
2
3
,中獎可以獲得2分;方案乙的中獎率為
2
5
,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

同步練習冊答案