曲線f(x)=(x-3)ex,當x∈(2,+∞)時,f(x)>k恒成立,則實數(shù)k的取值范圍是________.

(-∞,-e2]
分析:x∈(2,+∞)時,f(x)>k恒成立,等價于f(x)min>k,利用導數(shù)判斷f(x)的單調性,由單調性即可求得其最小值.
解答:f′(x)=ex+(x-3)ex=ex(x-2),
當x∈(2,+∞)時,f′(x)>0,
所以f(x)在(2,+∞)上單調遞增,f(x)>f(2)=-e2,
因為x∈(2,+∞)時,f(x)>k恒成立,
所以-e2≥k,即實數(shù)k的取值范圍是(-∞,-e2].
故答案為:(-∞,-e2].
點評:本題考查利用導數(shù)研究函數(shù)的最值,考查函數(shù)恒成立問題,函數(shù)恒成立往往轉化為函數(shù)最值解決,本題需要注意k與最小值的關系,含有等號.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切線的是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

經過曲線f(x)=x2(x-2)+1上點(1,f(x))處的切線方程為


  1. A.
    x+2y-1=0
  2. B.
    2x+y-1=0
  3. C.
    x-y+1=0
  4. D.
    x+y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=數(shù)學公式,存在自公切線的是


  1. A.
    ①③
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ②④

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省寧德市柘榮一中高三(上)第一次月考數(shù)學試卷(解析版) 題型:選擇題

若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=,存在自公切線的是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建師大附中高考數(shù)學模擬試卷(理科)(解析版) 題型:選擇題

若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=,存在自公切線的是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步練習冊答案