【題目】已知過點的動直線與圓相交于兩點,中點,與直線相交于.

(1)當垂直時,求的方程;

(2)當時,求直線的方程;

(3)探究是否與直線的傾斜角有關?若無關,求出其值;若有關,請說明理由.

【答案】(1);(2);(3)無關,.

【解析】

1)利用垂直時求出,利用點斜式即可得解;

2)討論直線斜率是否存在,當斜率存在時,利用點斜式設出方程,再根據(jù)即可得解;

3)先轉化,根據(jù)直線斜率是否存在分別求出點點坐標,計算后即可得解.

1直線與直線垂直,且.

故直線方程為,即.

2)①當直線軸垂直時,易知符合題意;

②當直線軸不垂直時,設直線的方程為,即,

中點,圓圓心為,半徑為,

,則由,得,

直線.

故直線的方程為.

(3),.

①當軸垂直時,易得,則,又,

.

②當的斜率存在時,設直線的方程為,

則由

.

.

綜上所述,與直線的斜率無關,且.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,(常數(shù)).

(Ⅰ)當的圖象相切時,求的值;

(Ⅱ)設,若存在極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中).

(1)討論函數(shù)的極值;

(2)對任意成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:

(1)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程

(2)若近幾年該農(nóng)產(chǎn)品每千克的價格 (單位:元)與年產(chǎn)量滿足的函數(shù)關系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當為何值時,銷售額最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)機公司出售收割機,一臺收割機的使用壽命為五年,在農(nóng)機公司購買收割機時可以一次性額外訂購買若干次維修服務,費用為每次100元,每次維修時公司維修人員均上門服務,實際上門服務時還需支付維修人員的餐飲費50/次;若實際維修次數(shù)少于購買的維修次數(shù),則未提供服務的訂購費用退還50%;如果維修次數(shù)超過了購買的次數(shù),農(nóng)機公司不再提供服務,收割機的維修只能到私人維修店,每次維修費用為400元,無須支付餐飲費;--位農(nóng)機手在購買收割機時,需決策一次性購買多少次維修服務.
為此,他擬范收集整理出一臺收割機在五年使用期內(nèi)維修次數(shù)及相應的頻率如下表:

(1)如果農(nóng)機手在購買收割機時購買了6次維修,在使用期內(nèi)實際維修的次數(shù)為5次,這位農(nóng)機手的花費總費用是多少?如果實際維修的次數(shù)是8次,農(nóng)機手的花費總費用又是多少?

(2)農(nóng)機手購買了一臺收制機,試在購買維修次數(shù)為6次和7次的兩個數(shù)據(jù)中,根據(jù)使用期內(nèi)維修時花費的總費用期望值,幫助農(nóng)機手進行決策.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在底面為梯形的四棱錐S﹣ABCD中,已知AD∥BC,∠ASC=60°,,SA=SC=SD=2.

(1)求證:AC⊥SD;

(2)求三棱錐B﹣SAD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關需要回答三個問題,其中前兩個問題回答正確各得分,回答不正確得分,第三個問題回答正確得分,回答不正確得分.如果一個挑戰(zhàn)者回答前兩個問題正確的概率都是,回答第三個問題正確的概率為,且各題回答正確與否相互之間沒有影響.若這位挑戰(zhàn)者回答這三個問題總分不低于分就算闖關成功.

(Ⅰ)求至少回答對一個問題的概率;

(Ⅱ)求這位挑戰(zhàn)者回答這三個問題的總得分X的分布列;

(Ⅲ)求這位挑戰(zhàn)者闖關成功的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓經(jīng)過點,且點為其一個焦點.

(1)求橢圓的方程;

(2)設橢圓軸的兩個交點為,,不在軸上的動點在直線上運動,直線分別與橢圓交于點,證明:直線通過一個定點,且的周長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結論:

①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;

②某學校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;

③線性相關系數(shù)越大,兩個變量的線性相關性越弱;反之,線性相關性越強;

④在回歸方程中,當解釋變量每增加一個單位時,預報變量增加0.5個單位.

其中正確的結論是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

同步練習冊答案