【題目】已知函數(shù),關(guān)于x的方程,下列四個(gè)結(jié)論中正確的有( )
①存在實(shí)數(shù)k,使得方程恰有2個(gè)不同的實(shí)根;
②存在實(shí)數(shù)k,使得方程恰有4個(gè)不同的實(shí)根;
③存在實(shí)數(shù)k,使得方程恰有5個(gè)不同的實(shí)根;
④存在實(shí)數(shù)k,使得方程恰有8個(gè)不同的實(shí)根.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
化簡(jiǎn),再令,從而化方程為,從而作函數(shù)的圖象,結(jié)合圖象分類討論解得,①②③④均正確.
解:∵,
∴當(dāng)時(shí),有且只有一個(gè)解,
當(dāng)時(shí),有兩個(gè)不同的解,
∵令,
則方程
可化為,
作函數(shù)的圖象,
結(jié)合圖象可知,
當(dāng)時(shí), 有兩個(gè)不同的解,
且
故方程
有四個(gè)不同的解,則②正確;
當(dāng)時(shí),有4個(gè)不同的解,且,
故方程
有8個(gè)不同的解,則④正確;
當(dāng)時(shí),有三個(gè)不同的解,分別為,0,1;
故方程有5個(gè)不同的解,則③正確;
當(dāng)時(shí),有兩個(gè)不同的解,且或,
故方程有2個(gè)不同的解,則①正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)市場(chǎng)調(diào)查,得到某種產(chǎn)品的資金投入(單位:萬(wàn)元)與獲得的利潤(rùn)(單位:千元)的數(shù)據(jù),如表所示
資金投入 | 2 | 3 | 4 | 5 |
利潤(rùn) | 2 | 3 | 5 | 6 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(2)該產(chǎn)品的資金投入每增加萬(wàn)元,獲得利潤(rùn)預(yù)計(jì)可增加多少千元?若投入資金萬(wàn)元,則獲得利潤(rùn)的估計(jì)值為多少千元?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實(shí)數(shù)a的取值范圍;
設(shè)m,n為正實(shí)數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點(diǎn).
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,過(guò)橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分16分)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列滿足:,且數(shù)列的前
n項(xiàng)和為.
(1) 求的值;
(2) 求證:數(shù)列是等比數(shù)列;
(3) 抽去數(shù)列中的第1項(xiàng),第4項(xiàng),第7項(xiàng),……,第3n-2項(xiàng),……余下的項(xiàng)順序不變,組成一個(gè)新數(shù)列,若的前n項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面,四邊形為菱形,四邊形為梯形,且,,,,M為線段的中點(diǎn).
(1)求證:平面;
(2)求平面將多面體分成的兩個(gè)部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:與拋物線有公共的焦點(diǎn),且公共弦長(zhǎng)為,
(1)求,的值.
(2)過(guò)的直線交于,兩點(diǎn),交于,兩點(diǎn),且,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com