已知兩點(diǎn)A(1,-2),B(-3,4),則以AB為直徑的圓的方程為( 。
A、(x+1)2+(y-1)2=13
B、(x-1)2+(y+1)2=13
C、(x+1)2+(y-1)2=52
D、(x-1)2+(y+1)2=52
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:首先利用A、B的坐標(biāo)確定圓心坐標(biāo),進(jìn)一步利用圓心坐標(biāo)和A的坐標(biāo)求出半徑,最后確定圓的方程.
解答: 解:根據(jù)題意:設(shè)圓心坐標(biāo)C(x,y),
已知兩點(diǎn)A(1,-2),B(-3,4),
建立方程組:
x=
1-3
2
=-1
y=
4-2
2
=1

R=
(1+1)2+(-2-1)2
=
13

所以圓的方程為:(x+1)2+(y-1)2=13
故選:A
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):圓的標(biāo)準(zhǔn)方程的求法,重點(diǎn)確定圓心和半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

球的半徑為2,它的內(nèi)接正方體的表面積為( 。
A、8B、16C、32D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=AD,AF⊥PC于點(diǎn)F,F(xiàn)E∥CD交PD于點(diǎn)E.
(1)證明:CF⊥平面ADF;
(2)若AC∩BD=O,證明FO∥平面AED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年9月初,臺(tái)灣曝“地溝油”大案,味全、85度C和美心集團(tuán)等知名企業(yè)紛紛中招.內(nèi)陸某食品企業(yè)在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了一種從“食品殘?jiān)敝刑釤挸錾锊裼偷捻?xiàng)目,經(jīng)測(cè)算,該項(xiàng)目處理成本y(元)與月處理量x(噸)之間的函數(shù)可以近似的表示為:y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)
,且每處理一噸“食品殘?jiān),可得到能利用的生物柴油價(jià)值為200元,若該項(xiàng)目不獲利,政府將補(bǔ)貼.
(1)當(dāng)x∈[200,300)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損;
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=12x的焦點(diǎn)為(  )
A、(6,0)
B、(0,6)
C、(3,0)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,且b=4,c=2,A=2B.
(1)求a的值;
(2)求sin(A+
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinx+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=( 。
A、0B、2014
C、2015D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|x=2n-2m,n、m∈N},P={x|1912≤x≤2004},則M∩P中所有元素的和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(1)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,且a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)-3x2-k(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程,若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案