A. | 3$\sqrt{2}$+3 | B. | 3($\sqrt{15}$+$\sqrt{3}$) | C. | 3$\sqrt{15}$+3$\sqrt{2}$ | D. | 3($\sqrt{2}$+$\sqrt{3}$) |
分析 畫出圖形,求出正三棱錐的底面邊長,側棱長以及斜高,然后求解正三棱錐的表面積.
解答 解:正三棱錐P-ABC的四個頂點都在同一球面上,
其中底面的三個頂點在該球的一個大圓上.
所以ABC的中心就是球心O,PO是球的半徑,也是正三棱錐的高,
則R=2,
由題意可知:OA=OB=OC=2,底面三角形ABC的高為:3.
則$\frac{\sqrt{3}}{2}$AB=3,AB=2$\sqrt{3}$,PA=3$\sqrt{2}$,
則該正三棱錐的表面積是:$\frac{1}{2}×2\sqrt{3}×3$+3×$\frac{1}{2}$×$2\sqrt{3}$×$\sqrt{{2}^{2}+{1}^{2}}$=3$\sqrt{3}$+3$\sqrt{15}$.
故選:B.
點評 本題考查空間幾何體的表面積的求法,正三棱錐與外接球的關系,考查空間想象能力以及計算能力.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,0) | B. | (π,-π) | C. | (2,$\frac{π}{4}$) | D. | (π,-$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | M和N | B. | M和G | C. | M和H | D. | N和H |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com