用反證法證明命題:“若a,b∈R,且a2+|b|=0,則a,b全為0”時,
應(yīng)假設(shè)為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
下列表述:①綜合法是執(zhí)因?qū)Ч;②分析法是間接證法;③分析法是執(zhí)果索因法;④反證法是直接證法.正確的語句是__ __ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
將全體正整數(shù)排成一個三角形數(shù)陣
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
… … … … … … … … …
根據(jù)以上排列規(guī)律,數(shù)陣中第行的從左至右的第個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)n為正整數(shù),f(n)=1+++…+,計(jì)算得f(2)=,f(4)>2,
f(8)>,f(16)>3,觀察上述結(jié)果,可推測一般的結(jié)論為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
橢圓中有如下結(jié)論:橢圓上斜率為1的弦的中點(diǎn)在直線上,類比上述結(jié)論得到正確的結(jié)論為:雙曲線上斜率為1的弦的中點(diǎn)在直線 上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
對大于或等于2的自然數(shù)m的n次方冪有如下分解方式:
22=1+3 23=3+5
32=1+3+5 33=7+9+11
42=1+3+5+7 43=13+15+17+19
52=1+3+5+7+9 53=21+23+25+27+29
根據(jù)上述分解規(guī)律,若m3(m∈N*)的分解中最小的數(shù)是73,則m的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在平面幾何里可以得出正確結(jié)論:“正三角形的內(nèi)切圓半徑等于這正三角形的高的”.拓展到空間,類比平面幾何的上述結(jié)論,則正四面體的內(nèi)切球半徑等于這個正四面體的高的________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(x+2)=f(x+1)-f(x),如
果f(1)=lg,f(2)=lg 15,則f(2 008)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過P點(diǎn)的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時求導(dǎo),得:
2yy'=2p,則y'=,所以過P的切線的斜率:k=.
試用上述方法求出雙曲線x2-=1在P(,)處的切線方程為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com