【題目】如圖在四棱錐PABCD,底面ABCD為菱形,BAD60°QAD的中點(diǎn).

(1)PAPD,求證:平面PQB⊥平面PAD;

(2)點(diǎn)M在線段PC,PMtPC,試確定實(shí)數(shù)t的值,使得PA∥平面MQB.

【答案】(1)詳見解析(2)PMPC,t.

【解析】試題分析:1)要證平面平面,只要證平面,它可以由得到.(2)中連接,,因?yàn)?/span>平面,故,由此可以得到,從而可以得到的大。

解析:(1)證明:連結(jié)四邊形為菱形, ,為正三角形, 的中點(diǎn),. 的中點(diǎn), 平面, 平面,∴平面平面

(2)當(dāng) 時(shí),使得平面,連接,的中點(diǎn).又∵的中線.∴為正三角形的中心. 令菱形的邊長(zhǎng)為a,.∵平面, 平面,平面平面,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知橢圓C的離心率為, 是橢圓的兩個(gè)焦點(diǎn), 是橢圓上任意一點(diǎn),且的周長(zhǎng)是

1)求橢圓C的方程;

2)設(shè)圓T,過橢圓的上頂點(diǎn)作圓T的兩條切線交橢圓于EF兩點(diǎn),當(dāng)圓心在軸上移動(dòng)且時(shí),求EF的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在[1,1]上的奇函數(shù),[0,1]f(x)2xln(x1)1.

(1)求函數(shù)f(x)的解析式;并判斷f(x)[1,1]上的單調(diào)性(不要求證明);

(2)解不等式f(2x1)f(1x2)0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設(shè)點(diǎn)FAB的中點(diǎn).

(1)求證:DE⊥平面BCD;

(2)若EF∥平面BDG,其中GAC上一點(diǎn),求三棱錐BDEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)證明: ,直線都不是曲線的切線;

(2)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)幾何體的正視圖和側(cè)視圖都是邊長(zhǎng)為1的正方形,且體積為,則這個(gè)幾何體的俯視圖可能是下列圖形中的________(填入所有可能的圖形前的編號(hào))

①銳角三角形;②直角三角形;③鈍角三角形;④四邊形;⑤扇形;⑥圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù)).

當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

若函數(shù)有兩個(gè)零點(diǎn),試求的取值范圍;

當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本.用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組(1~5號(hào),6~10號(hào),…,196~200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是________.若用分層抽樣法,則40歲的以下的年齡段應(yīng)抽取__________人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的倍,縱坐標(biāo)坐標(biāo)都伸長(zhǎng)為原來的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為

(1)求直線和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案