設(shè)函數(shù),.
(1)若,求的單調(diào)遞增區(qū)間;
(2)若曲線軸相切于異于原點(diǎn)的一點(diǎn),且的極小值為,求的值.
(1)證明過(guò)程詳見(jiàn)解析(2) ,.

試題分析:
(1)將條件帶入函數(shù)解析式消b,得到,對(duì)該三次函數(shù)求導(dǎo)得到導(dǎo)函數(shù),由于,故該導(dǎo)函數(shù)為二次函數(shù),根據(jù)題意需要求的該二次函數(shù)大于0的解集,因?yàn)槎魏瘮?shù)含參數(shù),故依次討論開(kāi)口,的符號(hào)和根的大小,即可到導(dǎo)函數(shù)大于0的解集即為原函數(shù)的單調(diào)增區(qū)間.
(2)分析題意,可得該三次函數(shù)過(guò)原點(diǎn),根據(jù)函數(shù)與x軸相切,所以有個(gè)極值為0且有一個(gè)重根,故可得函數(shù)有一個(gè)極大值0和一個(gè)極小值,有一個(gè)重根,則對(duì)因式分解會(huì)得到完全平方式,即提取x的公因式后,剩下二次式的判別,得到a,b之間的關(guān)系式,再根據(jù)極小值為,則求導(dǎo)求出極小值點(diǎn),得到關(guān)于a,b的另外一個(gè)等式,即可求出a,b的值.
試題解析:
(1),
,,
當(dāng)時(shí),由
①當(dāng)時(shí),的單調(diào)遞增區(qū)間為;      3分
②當(dāng)時(shí),的單調(diào)遞增區(qū)間為;                      5分
③當(dāng)時(shí),的單調(diào)遞增區(qū)間為.          7分
(2),
依據(jù)題意得:,且 ①          9分
,得            .    11分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041536475726.png" style="vertical-align:middle;" />,所以極小值為,
,得,  13分
代入①式得.             15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若對(duì)任意恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)上的最小值是2 ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(e為自然對(duì)數(shù)的底數(shù))
(1)求的最小值;
(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若,求處的切線方程;
(2)若在R上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),
(1)求函數(shù)的解析式;
(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),,且,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)上不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-ax-1.
(1)若a=3時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在實(shí)數(shù)集R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使f(x)在(-1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知的導(dǎo)函數(shù),則的圖像是(    )

查看答案和解析>>

同步練習(xí)冊(cè)答案