12.已知函數(shù)f(x)=x3+ax2+bx在x=1處取極值10,則b-a=21.

分析 首先對f(x)求導,然后由題設在x=1時有極值10可得,f′(1)=0,f(1)=10.,解之即可求出a和b的值.

解答 解:對函數(shù)函數(shù)f(x)=x3+ax2+bx,求導得 f′(x)=3x2+2ax+b,
又∵在x=1處取極值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b=10,
解得,a=-6,b=15,
b-a=21.
故答案為:21.

點評 本題考查掌握函數(shù)極值存在的條件,利用函數(shù)的極值存在的條件求參數(shù)的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.我省某校要進行一次月考,一般考生必須考5 門學科,其中語、數(shù)、英、綜合這四科是必考科目,另外一門在物理、化學、政治、歷史、生物、地理、英語Ⅱ中選擇.為節(jié)省時間,決定每天上午考兩門,下午考一門學科,三天半考完.
(1)若語、數(shù)、英、綜合四門學科安排在上午第一場考試,則“考試日程安排表”有多少種不同的安排方法;
(2)如果各科考試順序不受限制,求數(shù)學、化學在同一天考的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,己知平行四邊形ABCD中,∠BAD=60°,AB=6,AD=3,G為CD中點,現(xiàn)將梯形ABCG沿著AG折起到AFEG.
(I)求證:直線CE∥平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值.
(Ⅲ)若直線AF與平面 ABCD所成角為$\frac{π}{6}$,求證:FG⊥平面ABCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知點A(-1,0),B(1,0),△ABC的周長為6.
(Ⅰ)求動點C的軌跡E的方程;
(Ⅱ)設過點B(1,0)的直線l與曲線E相交于不同的兩點M,N.若點P在y軸上,且|PM|=|PN|,求點P的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為120°,若向量$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow$,且$\overrightarrow{a}⊥\overrightarrow{c}$,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$的值為(  )
A.$\frac{1}{2}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知圓O:x2+y2=1,圓O關于直線x+y+2=0對稱的圓C.
(1)求圓C的方程;
(2)在直線l:2x+y-3=0上是否存在點P,過點P分別作圓O,圓C的兩條切線PA,PB分別為A,B,有PA=PB?若存在,求出點P的坐標,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,斜三棱柱ABC-A1B1C1的所有棱長均為a,M是BC的中點,側面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求證:BC⊥C1M;
(Ⅱ)求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex,其中e為自然對數(shù)的底數(shù).
(Ⅰ)設$t(x)=\frac{1}{x}g(x),x∈(0,+∞)$,求函數(shù)t(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)過原點分別作曲線y=f(x)與y=g(x)的切線l1,l2,已知兩切線的斜率互為倒數(shù),
求證:a=0或$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.f(x)=$\left\{{\begin{array}{l}{\frac{1}{x}+alnx,(x>0,0<a<e)}\\{cosx,(x≤0)}\end{array}}$,則y=f[f(x)]的零點有( 。
A.0個B.1個C.2個D.無窮多個

查看答案和解析>>

同步練習冊答案