如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E與直線AA1的交點(diǎn).
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值.
(3)
(1)證明:(i)
(ii)由(i)知F為

(2)由(ii)的證明可知

【考點(diǎn)定位】該題主要考查平行關(guān)系,垂直關(guān)系的證明與空間線面角的計(jì)算,是?伎键c(diǎn),解法不失常用性
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩矩形ABCD、ABEF所在平面互相垂直,DE與平面ABCD及平面所成角分別為30°、45°,M、N分別為DE與DB的中點(diǎn),且MN=1.
(I) 求證:MN⊥平面ABCD

(II) 求線段AB的長;
(III)求二面角A-DE-B的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖示,邊長為2的正方形ABCD與正三角形ADP所在平面互相垂直,M是PC的中點(diǎn)。

(1)求證:∥平面;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點(diǎn),
(1)求證:平面;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如下圖(圖1)等腰梯形,上一點(diǎn),且,,沿著折疊使得二面角的二面角,連結(jié)、,在上取一點(diǎn)使得,連結(jié)得到如下圖(圖2)的一個(gè)幾何體.
(Ⅰ)求證:平面平面
(Ⅱ)設(shè),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.
(1)求證:;
(2)若四邊形ABCD是正方形,求證;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體.則下列四個(gè)命題

在直線上運(yùn)動時(shí),三棱錐的體積不變;
在直線上運(yùn)動時(shí),直線與平面所成的角的大小不變;
在直線上運(yùn)動時(shí),二面角的大小不變;
是平面上到點(diǎn)距離相等的點(diǎn),則點(diǎn)的軌跡是直線;
其中真命題的編號是_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)mn是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則   ②若,,則
③若,則  ④若,則
其中,正確命題的序號是______________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體ABCD-中, AB的中點(diǎn)為M,D的中點(diǎn)為N,則異面直線M與CN所成的角是(  )
A.0B.C.D.

查看答案和解析>>

同步練習(xí)冊答案