精英家教網 > 高中數學 > 題目詳情

【題目】函數,且處的切線斜率為.

(1)的值,并討論上的單調性;

(2)設函數 ,其中,若對任意的總存在,使得成立,求的取值范圍

3)已知函數,試判斷內零點的個數.

【答案】(1)答案見解析;(2)答案見解析.(3)1個零點

【解析】試題分析:

(1)由函數的解析式可得f′(x)(a1)sin xaxcos x,由可得,利用導函數討論單調性可得f(x), 上單調遞增;在, 上單調遞減.

(2)結合(1)的結論可知f(x)minf(0)1,則g(x)≥1x[0,+∞)上恒成立.且g′(x) (x≥0m>0),據此討論可知m≥2時滿足題意,當0<m<2時不合題意,則的取值范圍是m≥2.

(3)由函數的解析式可得: ,構造函數,據此討論可得存在,當, 單調遞增 單調遞減,結合端點函數在可得內零點的個數為1個.

試題解析:

(1)f′(x)asin xaxcos xsin x(a1)sin xaxcos x,

f (a1)··a·,

a1,f′(x)xcos x.

f′(x)>0時,-π<x<0<x<;

f′(x)<0時,-<x<0<x<π,

f(x)上單調遞增;在上單調遞減.

(2)x[0,]時,f(x)單調遞增,∴f(x)minf(0)1,

則只需g(x)≥1x[0,+∞)上恒成立即可.

g′(x) (x≥0,m>0),

①當m≥2時,≥0,g′(x)≥0[0,+∞)上恒成立,即g(x)[0,+∞)上單調遞增,又g(0)1,g(x)≥1x[0,+∞)上恒成立,故m≥2時成立.

②當0<m<2時,當x時,g′(x)<0,此時g(x)單調遞減,∴g(x)<g(0)1,故0<m<2時不成立.

綜上m≥2.

(3)由函數的解析式可得:

,故函數單調遞增,

從右側趨近于 , ,

故存在,滿足,

單調遞增,

, 單調遞減,

, ,

函數圖象如圖所示:

據此可得: 內零點的個數為1個.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓E的方程: ,P為橢圓上的一點(點P在第三象限上),圓P 以點P為圓心,且過橢圓的左頂點M與點C(﹣2,0),直線MP交圓P與另一點N.

(1)求圓P的標準方程;
(2)若點A在橢圓E上,求使得 取得最小值的點A的坐標;
(3)若過橢圓的右頂點的直線l上存在點Q,使∠MQN為鈍角,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標準采用世界衛(wèi)生組織設定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質量為一級;35微克/立方米~75微克/立方米之間空氣質量為二級;75微克/立方米及其以上空氣質量為超標.

某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數據中隨機抽取6天的數據作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數據中隨機抽出2,

(1)求恰有一天空氣質量超標的概率;

(2)求至多有一天空氣質量超標的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求函數y=的值的程序框圖如圖所示.

(1)指出程序框圖中的錯誤,并寫出算法;

(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.

要使輸出的值為正數,輸入的x的值應滿足什么條件?

要使輸出的值為8,輸入的x值應是多少?

要使輸出的y值最小,輸入的x值應是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求的極值;

(2)請?zhí)詈孟卤?在答卷),并畫出的圖象(不必寫出作圖步驟);

(3)設函數的圖象與軸有兩個交點,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四棱錐,側面是邊長為2的正三角形,且平面平面,底面是菱形,且, 為棱上的動點,且.

(1)求證:

(2)試確定的值,使得二面角的余弦值為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱柱ABCD﹣A1B1C1D1的側棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E為A1C的中點

(1)求證:D1E∥平面BB1C1C;
(2)求證:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)若,試判斷函數的零點個數;

(2)若函數上為增函數,求整數的最大值.

(可能要用到的數據: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f

1)如果函數的單調遞減區(qū)間為,求函數的解析式;

2)在(1)的條件下,求函數的圖象在點處的切線方程;

3)若不等式恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案