橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,過焦點F1的傾斜角為30°直線交橢圓于A、B兩點,弦長|AB|=8,若三角形ABF2的內(nèi)切圓的面積為π,則橢圓的離心率為( 。
A、
2
2
B、
3
6
C、
1
2
D、
3
3
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由等面積可得
1
2
×8×c=
1
2
×4a×1
,即可求出橢圓的離心率.
解答: 解:直線AB的方程為y=
3
3
(x+c),即x-
3
y+c=0,
F2到直線AB的距離d=
2c
2
=c,三角形ABF2的內(nèi)切圓的面積為π,則半徑為1,
∴由等面積可得
1
2
×8×c=
1
2
×4a×1
,
∴e=
c
a
=
1
2

故選:C.
點評:本題主要考查了直線與圓錐曲線的綜合問題,橢圓的簡單性質(zhì),三角形內(nèi)切圓性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=4,(
a
+
b
)⊥
a
,則|
a
-2
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+b,b∈[0,4],則原點O到此直線的距離不大于
2
的概率是( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c∈R且a>b,則下列不等式正確的是(  )
A、a+c>b+c
B、a+c<b+c
C、a+c≥b+c
D、a+c≤b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連擲骰子兩次(骰子六個面分別標(biāo)有數(shù)字1,2,3,4,5,6)朝上的面的點數(shù)分別記為a和b,則直線:3x-4y=0與圓(x-a)2+(y-b)2=4相切的概率為( 。
A、
1
2
B、
1
3
C、
1
6
D、
1
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為
1
n
(n≥2),每個數(shù)是它下一行左右相鄰兩數(shù)的和,如
1
1
=
1
2
+
1
2
,
1
2
=
1
3
+
1
6
,
1
3
=
1
4
+
1
12
,…,則第7行第3個數(shù)(從左往右數(shù))為( 。
A、
1
140
B、
1
105
C、
1
60
D、
1
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:①過與平面α平行的直線a有且僅有一個平面與α平行;②過與平面α垂直的直線a有且僅有一個平面與α垂直.則( 。
A、①正確,②不正確
B、①不正確,②正確
C、①②都正確
D、①②都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題(m,l表示直線,α表示平面)正確的個數(shù)有( 。
①若l∥m,m?α,則l∥α;②若l∥α,m?α,則l∥m
③若l⊥α,m?α,則l⊥m;④若l⊥α,m⊥l,則m∥α.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(a+lnx)的圖象在點(e,f(e))(e為自然對數(shù)的底數(shù))處的切線的斜率為3.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若k為整數(shù)時,k(x-1)<f(x)對任意x>1恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊答案