6.若沿一個正方體三個面的對角線截得的幾何體如圖所示,則下列說法正確的是( 。
A.正視圖與側(cè)視圖一樣B.正視圖與俯視圖一樣
C.側(cè)視圖與俯視圖一樣D.正視圖、側(cè)視圖、俯視圖都不一樣

分析 沿一個正方體三個面的對角線截得的幾何體,它的側(cè)視圖與俯視圖首先應(yīng)該是一個正方形,中間的棱在側(cè)視圖與俯視圖中表現(xiàn)為一條對角線,分析對角線的方向,即可得到答案.

解答 解:由已知中幾何體的直觀圖,
我們可得側(cè)視圖與俯視圖首先應(yīng)該是一個正方形,中間的棱在側(cè)視圖與俯視圖中表現(xiàn)為一條對角線,對角線的方向應(yīng)該從左上到右下,
故選C.

點評 本題考查的知識點是簡單空間圖象的三視圖,其中熟練掌握簡單幾何體的三視圖的形狀是解答此類問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.師大附中高一研究性學(xué)習(xí)小組,在某一高速公路服務(wù)區(qū),從小型汽車中按進(jìn)服務(wù)區(qū)的先后,以每間隔10輛就抽取一輛的抽樣方法抽取20名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]統(tǒng)計后得到如圖的頻率分布直方圖.
(1)此研究性學(xué)習(xí)小組在采集中,用到的是什么抽樣方法?并求這20輛小型汽車車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在[80,90)的車輛中做任意抽取3輛,求車速在[80,85)和[85,90)內(nèi)都有車輛的概率;
(3)若從車速在[90,100)的車輛中任意抽取3輛,求車速在[90,95)的車輛數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x4-4x3+10x2,則方程f(x)=27在[2,3]上的根的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.△ABC中,角A.B,C的對邊分別為3,4,5,點H位于AB邊上,沿CH折疊△ABC,若折疊過程中始終有AB⊥CH,則三棱錐H-ABC的體積的最大值為$\frac{288}{125}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是1(cm)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知當(dāng)x=3時,不等式loga(x2-x-2)<loga(3x+3)成立,那么這個不等式的解集是{x|2<x<5,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線的傾斜角為θ,且cotθ=k(k<0),求θ=f(k)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C的對邊分別是a,b,c,其面積為$\frac{3\sqrt{3}}{2}$,且c+2acosC=2b.
(1)求角A
(2)若a=$\sqrt{7}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:f(x)=ax(a>0且a≠1)是單調(diào)增函數(shù):命題q:?x∈($\frac{π}{4}$,$\frac{5π}{4}$),sinx>cosx,則下列命題為真命題的是( 。
A.p∧qB.p∨¬qC.¬p∧¬qD.¬p∧q

查看答案和解析>>

同步練習(xí)冊答案