(
1
2
)x1<(
1
2
)x2<1
,則( 。
分析:本題所給的不等式是一個(gè)指數(shù)不等式,我們要先將不等式的三項(xiàng)均化為同底,再根據(jù)指數(shù)函數(shù)的單調(diào)性,即可得到答案.
解答:解:不等式:(
1
2
)
x1
(
1
2
)
x2
<1
可化為:
(
1
2
)
x1
(
1
2
)
x2
(
1
2
)
0

又∵函數(shù)y=(
1
2
)
x
的底數(shù)0<
1
2
<1,
故函數(shù)y=(
1
2
)
x
為減函數(shù),
∴0<x2<x1
故選A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),其中根據(jù)指數(shù)函數(shù)的性質(zhì)將指數(shù)不等式轉(zhuǎn)化為一個(gè)整式不等式是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x
1-x
(0<x<1)的反函數(shù)為f-1(x),數(shù)列{an}和{bn}滿(mǎn)足:a1=
1
2
,an+1=f-1(an),函數(shù)y=f-1(x),的圖象在點(diǎn)(n,f-1(n))(n∈N*)處的切線(xiàn)在y軸上的截距為bn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{
bn
a
2
n
-
λ
an
}的項(xiàng)中僅
b5
a
2
5
-
λ
a5
最小,求λ的取值范圍;
(3)令函數(shù)g(x)=[f-1(x)+f(x)]-
1-x2
1+x2
,0<x<1.?dāng)?shù)列{xn}滿(mǎn)足:x1=
1
2
,0<xn<1且xn+1=g(xn)(其中n∈N*).證明:
(x2-x1)2
x1x2
+
(x3-x2)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
5
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-
1
3
x+
1
6
 ,x∈[0,
1
2
]
2x3
x+1
,x∈(
1
2
,1]
,函數(shù)g(x)=asin(
π
6
x)-2a+2,(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是
[
1
2
4
3
]
[
1
2
,
4
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x3
x+1
,x∈(
1
2
,1]
-
1
6
x+
1
12
,x∈[0,
1
2
]
,函數(shù)g(x)=asin
π
6
x
-a+1(a>0),若存在x1、x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是
[
1
2
,2]
[
1
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
(b-1)x2+cx+d
(a,b,c,d∈R).
(1)若函數(shù)f(x)在x=1,x=2處取得極值,求b,c的值;
(2)若函數(shù)f(x)在區(qū)間(-∞,x1),(x2,+∞)上為增函數(shù),在(x1,x2)上為減函數(shù),且x2-x1>1,求證:b2>2(b+2c);
(3)在(2)的條件下,當(dāng)t<x1時(shí),試比較t2+bt+c與x1的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案