【題目】已知函數(shù)f(x)=2x-P2-x,則下列結(jié)論正確的是( )
A. ,為奇函數(shù)且為R上的減函數(shù)
B. ,為偶函數(shù)且為R上的減函數(shù)
C. ,為奇函數(shù)且為R上的增函數(shù)
D. ,為偶函數(shù)且為R上的增函數(shù)
【答案】C
【解析】
根據(jù)函數(shù)奇偶性的定義可判定f(x)的奇偶性,根據(jù)增函數(shù)減去減函數(shù)還是增函數(shù)可得結(jié)論.
解:當(dāng)P=1時(shí),f(x)=2x-2-x,定義域?yàn)?/span>R且f(-x)=2-x-2x=-f(x)
∴f(x)為奇函數(shù)
∵2x是R上的增函數(shù),2-x是R的減函數(shù)
∴f(x)=2x-2-x為R上的增函數(shù),故選項(xiàng)C正確;
當(dāng)P=1時(shí),f(x)=2x+2-x,定義域?yàn)?/span>R且f(-x)=2-x+2x=f(x)
∴f(x)為偶函數(shù),
根據(jù)1<2,f(1)<f(2)則f(x)在R上不是減函數(shù);
根據(jù)-2<-1,f(-2)>f(-1)則f(x)在R上不是增函數(shù);
故選項(xiàng)B、D不正確
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在籃球比賽中,如果某位球員的得分,籃板,助攻,搶斷,蓋帽中有兩個(gè)值達(dá)到或以上,就稱該球員拿到了兩雙.下表是某球員在最近五場(chǎng)比賽中的數(shù)據(jù)統(tǒng)計(jì):
場(chǎng)次 | 得分 | 籃板 | 助攻 | 搶斷 | 蓋帽 |
()從上述比賽中任選場(chǎng),求該球員拿到“兩雙”的概率.
()從上述比賽中任選場(chǎng),設(shè)該球員拿到“兩雙”的次數(shù)為,求的分布列及數(shù)學(xué)期望.
()假設(shè)各場(chǎng)比賽互相獨(dú)立,將該球員在上述比賽中獲得“兩雙”的頻率作為概率,設(shè)其在接下來(lái)的三場(chǎng)比賽中獲得“兩雙”的次數(shù)為,試比賽與的大小關(guān)系(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)進(jìn)行自主招生時(shí),需要進(jìn)行邏輯思維和閱讀表達(dá)兩項(xiàng)能力的測(cè)試.學(xué)校對(duì)參加測(cè)試的200名學(xué)生的邏輯思維成績(jī)、閱讀表達(dá)成績(jī)以及這兩項(xiàng)的總成績(jī)進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:
得出下面四個(gè)結(jié)論:
①甲同學(xué)的閱讀表達(dá)成績(jī)排名比他的邏輯思維成績(jī)排名更靠前
②乙同學(xué)的邏輯思維成績(jī)排名比他的閱讀表達(dá)成績(jī)排名更靠前
③甲、乙、丙三位同學(xué)的邏輯思維成績(jī)排名中,甲同學(xué)更靠前
④乙同學(xué)的總成績(jī)排名比丙同學(xué)的總成績(jī)排名更靠前
則所有正確結(jié)論的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|1≤x≤3},B={x|x>2}.
(Ⅰ)分別求A∩B,(RB)∪A;
(Ⅱ)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,C為圓周上一點(diǎn),過(guò)C作圓O的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E.
(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果為10,則判斷框中應(yīng)填入的條件是( )
A.k≥﹣3
B.k≥﹣2
C.k<﹣3
D.k≤﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形ABCD中,AB∥CD,∠DAB=90°,點(diǎn)E、F分別在CD、AB上,且EF⊥CD,BE⊥BC,BC=1,CE=2.現(xiàn)將矩形ADEF沿EF折起,使平面ADEF與平面EFBC垂直(如圖2).
(1)求證:CD∥面ABF;
(2)當(dāng)AF的長(zhǎng)為何值時(shí),二面角A﹣BC﹣F的大小為30°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,其中a為實(shí)常數(shù).
(1)若函數(shù)f(x)的最小值為2,求a的值;
(2)當(dāng)x∈[0,1]時(shí),不等式|x﹣2|≥f(x)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐中, 平面, , ,且, , 是的中點(diǎn).
(1)求異面直線與所成角的大;
(2)求點(diǎn)D到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com