精英家教網 > 高中數學 > 題目詳情
10.若函數f(x)在定義域內存在實數x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數”.
(1)當定義域為[-1,1],試判斷f(x)=x4+x3+x2+x-1是否為“局部奇函數”;
(2)若g(x)=4x-m•2x+1+m2-3為定義域R上的“局部奇函數”,求實數m的范圍;
(3)已知a>1,對于任意的$b∈[1,\frac{3}{2}]$,函數h(x)=ln(x+1+a)+x2+x-b都是定義域為[-1,1]上的“局部奇函數”,求實數a的取值范圍.

分析 (1)若f(x)為“局部奇函數”,則根據定義驗證條件是否成立即可;
(2)根據f(x)為定義域R上的“局部奇函數,得到f(-x)=-f(x),恒成立,建立條件關系即可求實數m的取值范圍;
(3)根據f(x)為定義域[-1,1]上的“局部奇函數,得到f(-x)=-f(x),恒成立,建立條件關系即可求實數a的取值范圍;

解答 解:(1)因為f(x)=x4+x3+x2+x-1,
所以f(-x)=x4-x3+x2-x-1,
由f(-x)=-f(x)得x4+x2-1=0,
令x2=t∈[0,1],而t2+t-1=0存在一根$\frac{{\sqrt{5}-1}}{2}∈[0,1]$,
即存在x∈[-1,1],使得f(-x)=-f(x),
所以f(x)為“局部奇函數”.
(2)由題意知,g(-x)=-g(x)在R上有解,即4-x-2m•2-x+m2-3=-4x+2m•2x-m2+3在R上有解,
所以4x+4-x-2m(2x+2-x)+2(m2-3)=0在R上有解,
令2x+2-x=u∈[2,+∞),
所以u2-2mu+2m2-8=0在u∈[2,+∞)上有解,
令F(u)=u2-2mu+2m2-8,
①當F(2)≤0時,即2m2-4m-4≤0,解得$1-\sqrt{3}≤m≤1+\sqrt{3}$,
此時F(u)在[2,+∞)上必有零點,所以$1-\sqrt{3}≤m≤1+\sqrt{3}$;
②當F(2)>0時,F(u)在[2,+∞)上有零點必須滿足
$\left\{{\begin{array}{l}{△≥0}\\{F(2)>0}\\{對稱軸x=m>2}\end{array}}\right.⇒\left\{{\begin{array}{l}{4{m^2}-4(2{m^2}-8)≥0}\\{2{m^2}-4m-4>0}\\{m>2}\end{array}}\right.⇒1+\sqrt{3}≤m≤2\sqrt{2}$
綜上:$1-\sqrt{3}≤m≤2\sqrt{2}$.
(3)由題意知,$?b∈[1,\frac{3}{2}]$,-h(x)=h(-x)在x∈[-1,1]上都有解,
即$?b∈[1,\frac{3}{2}]$,ln(-x+1+a)+x2-x-b=-ln(x+1+a)-x2-x+b在x∈[-1,1]上都有解,
即$?b∈[1,\frac{3}{2}]$,ln[(a+1)2-x2]+2x2=2b在x∈[-1,1]上都有解,
令x2=s∈[0,1],令φ(s)=ln[(a+1)2-s]+2s,
由題意知φ(s)在s∈[0,1]上的值域包含[2,3],
因為${φ^'}(s)=\frac{-1}{{{{(a+1)}^2}-s}}+2$,又因為s∈[0,1],a∈(1,+∞),所以(a+1)2-s>3,
所以φ′(s)>0,所以φ(s)在s∈[0,1]上單調遞增,
所以$\left\{{\begin{array}{l}{φ(0)≤2}\\{φ(1)≥3}\\{a>1}\end{array}}\right.⇒\left\{{\begin{array}{l}{a≤e-1}\\{a≥\sqrt{e+1}-1}\\{a>1}\end{array}}\right.⇒1<a≤e-1$
綜上:1<a≤e-1.

點評 本題主要考查與函數奇偶性有關的新定義,根據條件建立方程關系是解決本題的關鍵,考查學生的計算能力,屬于難題

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

4.如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=$\frac{π}{3}$,AD=4,AM=2,E是AB的中點
(1)求證:平面MDE⊥平面NDC
(2)求三棱錐N-MDC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.函數f(x)=ax3+6x2+(a-1)x-5有極值的充要條件是( 。
A.a=-3或a=4B.-3<a<4C.a>4或a<-3D.a∈R

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知函數f(x)是定義在R上的偶函數,且f(-x-1)=f(x-1),當x∈[-1,0]時,f(x)=-x3,則關于x的方程f(x)=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上的所有實數解之和為(  )
A.-7B.-6C.-3D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{π}{2}}^{\frac{π}{2}}{x^3}dx-\int_1^2{({\frac{1}{x}-x})dx=}$8π+ln2-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.
(1)將下面的2×2列聯表補充完整;
出生時間
性別
晚上白天合計
男嬰
女嬰
合計
(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關系?
參考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)獨立性檢驗的臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.已知函數f (x)及其導數f′(x),若存在x0,使得f (x0)=f′(x0),則稱x0是f (x)的一個“巧值點”,下列函數中,存在“巧值點”的是①②③⑤.(填上所有正確的序號)
①f (x)=x2
②f(x)=sinx,
③f (x)=lnx,
④f (x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.數列{(-1)n(2n-1)}的前2 016項和S2016等于(  )
A.-2 016B.2 016C.-2 015D.2 015

查看答案和解析>>

同步練習冊答案