已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)在區(qū)間內(nèi)存在,使不等式成立,求的取值范圍.
(1)的單調(diào)遞增區(qū)間是,的單調(diào)遞減區(qū)間是.
(2)的取值范圍是.
解析試題分析:(1)首先確定函數(shù)的定義域.求導數(shù):
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù),().
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)f(x)=ax2+ln(x+1).
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù),.
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學
來源:
題型:解答題
已知數(shù)列的前項和為,對一切正整數(shù),點都在函數(shù)的圖像上,且過點的切線的斜率為.
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù),,其中.
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)(),其中.
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù),函數(shù)是函數(shù)的導函數(shù).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
,根據(jù)當時,為單調(diào)遞增函數(shù);
當時,為單調(diào)遞減函數(shù),得到函數(shù)的單調(diào)區(qū)間.
(2)構(gòu)造函數(shù),即,將問題轉(zhuǎn)化成:在區(qū)間內(nèi),,利用導數(shù)求函數(shù)的極值、最小值,得到的取值范圍是.
試題解析:(1)函數(shù)的定義域為,
2分
當,即時,為單調(diào)遞增函數(shù);
當,即時,為單調(diào)遞減函數(shù);
所以,的單調(diào)遞增區(qū)間是,的單調(diào)遞減區(qū)間是 6分
(2)由不等式,得,令,
則 8分
由題意可轉(zhuǎn)化為:在區(qū)間內(nèi),,
,令,得
0
+
(1)試討論函數(shù)的單調(diào)性;
(2)設函數(shù),,當函數(shù)有零點時,求實數(shù)的最大值.
(1)當a=時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當時,函數(shù)y=f(x)圖像上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍;
(3)求證:(其中,e是自然數(shù)對數(shù)的底數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間的最小值為,求的值.
(1)求證:函數(shù)在區(qū)間上存在唯一的極值點;
(2)當時,若關于的不等式恒成立,試求實數(shù)的取值范圍.
(1)求數(shù)列的通項公式;
(2)設,等差數(shù)列的任一項,其中是中所有元素的最小數(shù),,求的通項公式.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有≥成立,求實數(shù)的取值范圍.
(1)若曲線與在點處相交且有相同的切線,求的值;
(2)設,若對于任意的,函數(shù)在區(qū)間上的值恒為負數(shù),求的取值范圍.
(1)若,求的單調(diào)減區(qū)間;
(2)若對任意,且,都有,求實數(shù)的取值范圍;
(3)在第(2)問求出的實數(shù)的范圍內(nèi),若存在一個與有關的負數(shù),使得對任意時恒成立,求的最小值及相應的值.
版權聲明:本站所有文章,圖片來源于網(wǎng)絡,著作權及版權歸原作者所有,轉(zhuǎn)載無意侵犯版權,如有侵權,請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號