11.已知等差數(shù)列{an}中,Sn為其前n項(xiàng)和,a2+a8=14,S5=25.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}前n項(xiàng)和Tn

分析 (1)根據(jù)等差數(shù)列性質(zhì)及前n項(xiàng)和公式聯(lián)立方程組求得a1和d,利用等差數(shù)列通項(xiàng)公式即可求得{an}的通項(xiàng)公式;
(2)由${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項(xiàng)法”即可求得數(shù)列{bn}前n項(xiàng)和Tn

解答 解:(1)∵{an}是等差數(shù)列,a2+a8=14,2a1+6d=14,①
S5=25,即5a1+10d=25,②
∴聯(lián)立解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,…(3分)
∴{an}的通項(xiàng)公式an=a1+(n-1)d=2n-1,
∴an=2n-1;…(5分)
(2)由(1)知${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,…(7分)
∴${T_n}={b_1}+{b_2}+{b_3}+…+{b_n}=\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$,
=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$,
數(shù)列{bn}前n項(xiàng)和Tn,Tn=$\frac{n}{2n+1}$.…(12分)

點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),等差數(shù)列前n項(xiàng)和公式,考查“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知△ABC是邊長(zhǎng)為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使$\overrightarrow{DE}$=2$\overrightarrow{EF}$,則$\overrightarrow{AF}$•$\overrightarrow{BC}$的值為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{11}{8}$D.$-\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{2^x}{{{2^x}+\sqrt{2}}}$.
(1)求f(x)+f(1-x)的值;
(2)若數(shù)列{an}滿足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足bn=2nan,Sn是數(shù)列{bn}的前n項(xiàng)和,是否存在正實(shí)數(shù)k,使不等式knSn>3bn對(duì)于一切的n∈N*恒成立?若存在,請(qǐng)求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)x,y滿足線性約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-3y+1≤0}\\{x+y-2≤0}\end{array}\right.$,若z=ax-y(a>0)取得最大值的最優(yōu)解有數(shù)多個(gè),則實(shí)數(shù)a的值為( 。
A.2B.$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,cos2A-3cos(B+C)-1=0.
(1)求角A的大;
(2)若△ABC的外接圓半徑為1,試求該三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.二元一次方程組$\left\{\begin{array}{l}2x+3y=1\\ x-2y=-1\end{array}\right.$的增廣矩陣是$[\begin{array}{l}{2}&{3}&{1}\\{1}&{-2}&{-1}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在等比數(shù)列{an}中,前n項(xiàng)和Sn=2n+a(n∈N*),則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若y=|3sin(ωx+$\frac{π}{12}$)+2|的圖象向右平移$\frac{π}{6}$個(gè)單位后與自身重合,且y=tanωx的一個(gè)對(duì)稱中心為($\frac{π}{48}$,0),則ω的最小正值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和是Sn,且滿足2Sn=3an-$\frac{1}{2}$(n∈N*).
(1)求a1,a2,a3,a4,并猜想通項(xiàng)公式an(不用證明);
(2)設(shè)bn=1+2log3(2an),求證:$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案