已知,(1)若展開(kāi)式中第五項(xiàng)、第六項(xiàng)、第七項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);(2)若展開(kāi)式中前三項(xiàng)的二項(xiàng)式系數(shù)之和等于79,求展開(kāi)式中系數(shù)最大的項(xiàng).

答案:
解析:

   (1)由已知得-21n+98=0,解得n=7或n=14.

  當(dāng)n=7時(shí),展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)是第四項(xiàng)和第五項(xiàng).第四項(xiàng)的系數(shù)等于=70.

  當(dāng)n=14時(shí),展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)是第8項(xiàng),它的系數(shù)為

  (2)由+n-156=0,解得n=-13(舍去),n=12.設(shè)解得9.4≤r≤10.4,∴r=10,所以展開(kāi)式中系數(shù)最大的項(xiàng)是


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在(1+x)n的展開(kāi)式中,若第3項(xiàng)與第6項(xiàng)系數(shù)相等,則n等于多少?
(2)(x
x
+
1
3x
)n
的展開(kāi)式奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和為128,則求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng).
(3)已知(x2-
1
x
)n
展開(kāi)式中的二項(xiàng)式系數(shù)的和比(3a+2b)7展開(kāi)式的二項(xiàng)式系數(shù)的和大128,求(x2-
1
x
)n
展開(kāi)式中的系數(shù)最大的項(xiàng)和系數(shù)最小的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+
12
x
n展開(kāi)式的各項(xiàng)依次記為a1(x),a2(x),a3(x)…an(x),an+1(x).設(shè)F(x)=a1(x)+2a2(x)+2a2(x)+3a3(x)…+nan(x)+(n+1)an+1(x).
(1)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(2)求證:對(duì)任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2)-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(ax+1)7的展開(kāi)式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),若a>1,則實(shí)數(shù)a=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧盤(pán)錦二中高二下學(xué)期月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(滿分10分)(1)已知(x+1)6(ax-1)2的展開(kāi)式中含x3的項(xiàng)的系數(shù)是20,求a的值。(2)設(shè)(5x-)n的展開(kāi)式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,若M-N=240,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案