【題目】如圖,邊長為的正方形和高為的等腰梯形所在的平面互相垂直,,,與交于點,點為線段上任意一點.
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)是否存在點使平面與平面垂直,若存在,求出的值,若不存在,說明理由.
【答案】(Ⅰ)詳見解析(Ⅱ)(Ⅲ)存在,且此時的值為
【解析】
(Ⅰ)證明EF∥BD,OF∥ED.推出OF∥平面ADE;
(Ⅱ)取EF中點M,連結(jié)MO,得到MO⊥BD.證明MO⊥平面ABCD,建立空間直角坐標系O﹣xyz,求出平面ADE的法向量利用空間向量的數(shù)量積求解直線BF與平面ADE所成角;
(Ⅲ)設(shè),求出平面BCH的法向量,通過平面BCH與平面ADE垂直,則,轉(zhuǎn)化求解即可.
證明:(Ⅰ)因為正方形中,與交于點,
所以.
因為,
所以 且
所以為平行四邊形.
所以 .
又因為平面,平面,
所以平面.
解:(Ⅱ)取中點,連結(jié),因為梯形為等腰梯形,所以.
又因為平面平面,
平面,
平面平面,
所以平面.
又因為,
所以兩兩垂直.
如圖,建立空間直角坐標系,
則
,
,,,
設(shè)平面的法向量為,
則,即,
令,則,所以.
設(shè)直線與平面所成角為,
,
所以直線與平面所成角的正弦值為.
(Ⅲ)設(shè),
則,,
設(shè)平面的法向量為,
則,即,
令,則,.
所以.
若平面與平面垂直,則.
由,得.
所以線段OF上存在點使平面與平面垂直,
的值為.
科目:高中數(shù)學 來源: 題型:
【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在“員工甲不是第一個檢測,員工乙不是最后一個檢測”的條件下,員工丙第一個檢測的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,說法正確的是( )
A.命題“,”的否定為“,”;
B.命題“在中,,則”的逆否命題為真命題;
C.已知、m是兩條不同的直線,是個平面,若,則;
D.已知定義在R上的函數(shù),則“為奇函數(shù)”是“”的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;
(3)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在極坐標系中,,,,,,弧,所在圓的圓心分別是,,曲線是弧,曲線是線段,曲線是線段,曲線是弧.
(1)分別寫出,,,的極坐標方程;
(2)曲線由,,,構(gòu)成,若點,(),在上,則當時,求點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題,其中正確的命題有( )
A.設(shè)具有相關(guān)關(guān)系的兩個變量x,y的相關(guān)系數(shù)為r,則越接近于0,x,y之間的線性相關(guān)程度越高
B.隨機變量,若,則
C.公共汽車上有10位乘客,沿途5個車站,乘客下車的可能方式有種
D.回歸方程為中,變量y與x具有正的線性相關(guān)關(guān)系,變量x增加1個單位時,y平均增加0.85個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出與的函數(shù)關(guān)系式;
(2)按這100天統(tǒng)計的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果三個常用對數(shù)中,任意兩個的對數(shù)尾數(shù)之和大于第三個對數(shù)尾數(shù),則稱這三個正數(shù)可以構(gòu)成一個“對數(shù)三角形”.現(xiàn)從集合 M={7,8,9,10,11,12,13,14} 中選擇三個互異整數(shù)作成對數(shù)三角形,則不同的選擇方案有( )種.
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com