A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | [1,+∞) |
分析 分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,問題得以解決.
解答 解:∵ax2-2x+1>0對x∈($\frac{1}{2}$,+∞)恒成立,
∴a>$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
設(shè)f(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
∴f′(x)=-$\frac{2}{{x}^{2}}$+$\frac{2}{{x}^{3}}$=$\frac{2}{{x}^{3}}$(-x+1),
令f′(x)>0,解得$\frac{1}{2}$<x<1,函數(shù)單調(diào)遞增,
f′(x)<0,解得x>1,函數(shù)單調(diào)遞減,
∴f(x)max=f(1)=$\frac{2}{1}$-1=1,
∴a>1,
故選:B.
點評 本題考查恒成立問題,考查導(dǎo)數(shù)知識的綜合運用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-2\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com